Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
A=1+5+5^2+..+5^9/1+5+5^2+...+5^8
=1+5^9/1+5+5^2+...+5^8
B=1+3+3^2+..+3^9/1+3+3^2+..+3^8
=1+3^9/1+3+3^2+..+3^8
đặt A' =1+5+5^2+...+5^8
5A'=5+5^2+5^3+...+5^9
5A'-A'=5+5^2+5^3+...+5^9-5-1-5-5^2-...-5^8
4A'=5^9-1=>A'=(5^9-1):4
tương tự B'=(3^9-1):4
A=1+5^9/(5^9-1)/4=4.5^9/5^9-1
B=1+3^9/(3^9-1)/4=4.3^9/3^9-1
=> A<B
kieu nay la ko tinh ra ket qua hay so sanh
A=1+C; voi C=5^9/(1+...5^8)=1/(1/5^9+1/5^8+...+1/5)
B=1+D;voi D=3^9/(1+..3^8)=1/(1/3^9+1/3^8+...+1/3)
C=1/E; voi E=(1/5^9+1/5^8+...+1/5)
D=1/f; voi F=(1/3^9+1/3^8+...+1/3)
=> F-E=(1/3-1/5)+...+(1/3^9-1/5^9) >0=> F>E
=> C>D=> A>B
\(\frac{1}{5}A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
\(\frac{1}{3}B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}=1\)
Vì \(\frac{1}{5}<\frac{1}{3}\)Nên \(\frac{1}{5}A<\frac{1}{5}B\)
Vậy A<B
ai trả lời cũng sai hết rồi
Tui Gợi ý là A > B
Bây giờ các bạn ghi cách giải đi
mk nghĩ là A>B