\(\frac{1.3.5.7.....4095}{2.4.6.8.....4096}\)

       B=\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

vì 1.3.5.....4095<2.4....4096 => A<1 và B>1

=> A>B => A^2<A.B

1 tháng 5 2017

bang nhau

Giai:

A=1.3.5.7...97.99=\(\frac{\left(1.3.5...97.99\right).\left(2.4.6...100\right)}{2.4.6...100}\)

=\(\frac{1.2.3.4...99.100}{\left(1.2\right).\left(2.2\right)...\left(2.50\right)}\)

=\(\frac{\left(1.2.3...50\right).\left(51.52...99.100\right)}{\left(1.2.3...49.50\right).2^{50}}\)

=\(\frac{51.52...99.100}{2.2...2.2}\)

=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)

mà B=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)

Nên A=B

Vậy A=B

1 tháng 5 2017

\(1.3.5.7...97.99=\frac{100!}{2.4.6.8...100}\)

\(=\frac{1.2.3.4...100}{1.2.2.2.3.2...50.2}\)

\(=\frac{51.52.53...100}{2}\)

Vậy \(A=B\)

4 tháng 3 2018

Ta có : 

\(A=1+5+5^2+...+5^{32}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)

\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)

\(A=31+31.5^3+...+31.5^{30}\)

\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31 

Vậy \(A\) chia hết cho 31

4 tháng 3 2018

\(a)\) Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)

Vậy ...