\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)

Chứng minh 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

\(\frac{1.3.5...79}{2.4.6...80}\)\(\frac{1.3.5...79}{\left(1.2\right).\left(2.2\right).\left(3.2\right)...\left(40.2\right)}\).\(\frac{1.3.5...79}{\left(1.2.3.4...40\right).\left(2.2.2.2...2.2\right)}\)=\(\frac{1.3.5...79}{\left(1.3.5...39\right).\left(2.4.6...40\right).2^{40}}\)<1/9

13 tháng 8 2015

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}<\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}...\frac{78}{79}.\frac{79}{80}=\frac{1}{80}<\frac{1}{9}\)

\(\text{Vậy }A<\frac{1}{9}\)

 

c)  C = ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 79 - 80 )

     C = ( -1 ) + ( -1 ) + ... + ( -1 )

     C = ( -1 ) x ( 80 - 1 + 1 ) : 2

     C = ( -1 ) x 80 : 2

     C = ( -40 )

4 tháng 7 2017

C=1-2+3-4+...+79-80

=(1-2)+(3-4)+...+(79-80)

=-1+(-1)+...+(-1) (có 80 số hạng bàng -1)

=-1*80

=-80

18 tháng 12 2016

1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab

=>(a+b/)2ab-1/h=0

quy dong len ta co

(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0

                                                                       =>ah+bh-ab-ab=0

                                                                         =>a(h-b)-b(a-h)=0  

                                                                           =>a(h-b)=b(a-h)

                                                                              =>a/b=(a-h)(h-b)

                                                                       

13 tháng 8 2015

ta co :   A= ( 8^9+12/8^9+7) -1

              =  5/8^9+7

           B=(8^10+4/8^10-1)-1

             =5/8^10-1

     VI     8^9+7 < 8^10-1  NEN  5/8^9+7 > 5/8^10-1

                    VAY           A   >     B

 

 

15 tháng 3 2017

Ta có : A = ( 8^9+12/8^9+7) - 1

               = 5/8^9 + 7

           B = (8^10+4/8^10-1) - 1

              = 5/8^10-1

VI           8^9 + 7 < 8^10 - 1 nên 5/8^9+7 > 5/8^10-1

23 tháng 8 2019

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

23 tháng 8 2019

b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)

\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)