K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

A = 1/2 + 1/3 + 1/4 + ... + 1/31

A = (1/2 + 1/3) + (1/4 + 1/5 + 1/6 + 1/7) + (1/8 + 1/9 + ... + 1/15) + (1/16 + 1/17 + ... + 1/31)

A < 1/2 × 2 + 1/4 × 4 + 1/8 × 8 + 1/16 × 16

A < 1 + 1 + 1 + 1

A < 4 ( đpcm)

23 tháng 4 2019

Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)

         \(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)

Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)

 Ta có: \(\frac{1}{31}>\frac{1}{45}\)

           \(\frac{1}{32}>\frac{1}{45}\)

           ....................

          \(\frac{1}{45}=\frac{1}{45}\)

\(\Rightarrow B>\frac{1}{45}.15\)

\(\Rightarrow B>\frac{1}{3}\)

Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)

Ta có: \(\frac{1}{46}>\frac{1}{90}\)

           \(\frac{1}{47}>\frac{1}{90}\)

          .....................

         \(\frac{1}{90}=\frac{1}{90}\)

\(\Rightarrow C>\frac{1}{90}.45\)

\(\Rightarrow C>\frac{1}{2}\)

\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)

Hay \(A>\frac{5}{6}\left(1\right)\)

Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)

Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)

Ta có: \(\frac{1}{31}< \frac{1}{30}\)

          . ...................

           \(\frac{1}{59}< \frac{1}{30}\)

\(\Rightarrow D< \frac{1}{30}.60\)

\(\Rightarrow D< \frac{1}{2}\)

Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)

Ta có: \(\frac{1}{60}=\frac{1}{60}\)

             .................

          \(\frac{1}{90}< \frac{1}{60}\)

\(\Rightarrow E< \frac{1}{60}.31\)

\(\Rightarrow E< \frac{31}{60}< 1\)

\(\Rightarrow E< 1\)

\(\Rightarrow E+D< 1+\frac{1}{2}\)

Hay \(A< \frac{3}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)

23 tháng 4 2019

Mình làm hơi ngáo có gì thì cứ nói 

3 tháng 4 2020

Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)

=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)

Lấy 5A trừ A theo vế ta có :

5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)

4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)

Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)

=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)

Lấy 5B trừ B ta có : 

=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)

=> 4B =\(1-\frac{1}{5^{11}}\)

=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)

Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)

=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)

cậu ơi , mình quên không ghi 1 dữ liệu ạ 

n thuộc N 

V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)

Ta có :

\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)

\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(A=2\times\frac{49}{102}\)

\(A=\frac{49}{51}\)

16 tháng 5 2017

đề bài mk chỉ cho 50 thôi ko có 51 đâu

nên mk cho bạn 1k thôi nhé

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

12 tháng 3 2017

yêu cầu của đề bài là gì vậy bạn

12 tháng 3 2017

A = \(\left(\frac{1}{11}+\frac{1}{12}+.........+\frac{1}{20}\right)\)  +  \(\left(\frac{1}{21}+\frac{1}{22}+..........+\frac{1}{30}\right)\)\(\left(\frac{1}{31}+.....+\frac{1}{60}\right)\)+ ... + \(\frac{1}{70}\)

Nhận xét: 

\(\frac{1}{11}\)\(\frac{1}{12}\)+ ........  +  \(\frac{1}{20}\)\(\frac{1}{20}\)+\(\frac{1}{20}\)+........+\(\frac{1}{20}\)\(\frac{10}{20}\)>\(\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+.......+\frac{1}{30}>\frac{30}{60}>\frac{1}{2}\)

\(\frac{1}{31}+......+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+.......+\frac{1}{60}>\frac{30}{60}>\frac{1}{2}\)

A > \(\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+......+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}>\frac{4}{3}\)