K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

TA CÓ:

     A = \(\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{2016}{2^{2017}}\)

=> 2A = \(\frac{2.1}{2^2}+\frac{2.2}{2^3}+...+\frac{2016.2}{2^{2017}}\)

        = \(\frac{1}{2}+\frac{2}{2^2}+...+\frac{2016}{2^{2016}}\)

=> 2A - A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)

=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)

ĐẶT B = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

TA CÓ 2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

=> 2B - B = B = \(1-\frac{1}{2^{2016}}< 1\)

=> A < 1   ( ĐPCM)

18 tháng 8 2020

cảm ơn bạn nhiều

16 tháng 1 2018

\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)

\(B=2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)

\(B=1+\left(\frac{2015}{2}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)\)

\(B=\frac{2017}{2017}+\frac{2017}{2}+...+\frac{2017}{2015}+\frac{2017}{2016}\)

\(B=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\frac{B}{A}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{2}{2017}}=2017\)

16 tháng 11 2017

Ta có :

\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)

\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)

\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)

\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)

Vậy \(\frac{B}{A}\)là số nguyên

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

30 tháng 8 2016

\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)

30 tháng 8 2016

\(10^{2016}\)= 1000...00(mình ko cần biết cso bao nhiêu cx 0, nó là bài đánh  lừa nhá bn)

\(2^3\)= 8

\(10^{2016}\) + 8= 10000...08

có 1+0+0+...+0+8=9. vậy số này chia hết cho 9

mà như bạn thấy số này là số dương nên số đó là số tự nhiên nhá