\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2003^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Ta có \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2003^2}< \frac{1}{2002\cdot2003}\)

Suy ra \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2002\cdot2003}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\)

\(A< 1-\frac{1}{2003}< 1\)

\(\Rightarrow A< 1\)

20 tháng 1 2019

Ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2003^2}< \frac{1}{2002.2003}\)

Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\)

\(A< 1-\frac{1}{2003}< 1\)

\(\Rightarrow A< 1\)

14 tháng 4 2018

Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé

22 tháng 2 2020

\(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\) 

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...

\(\frac{1}{10^2}< \frac{1}{9.10}=\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}< 1\)

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}\)\(< 1\)

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}< 1\)

Vậy \(D=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}< 1\)

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you

15 tháng 4 2018

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

tra loi nhah giup m nha