\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: A > 0 (Vì A gồm các phân số dương)

Ta lại có:

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}_{ }+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1-\frac{1}{2016}< 1\)

\(\Rightarrow A< 1\)

Vì \(0< A< 1\) nên A không phải là số tự nhiên (đpcm)

9 tháng 5 2016

ta thấy 1/2^2;...;1/2016^2 >0=> A>0

lại thấy 1/2^2<1/1.2 ;.....;1/2016^2 < 1/2015.2016

=> A<1

=> 0<A<1 => Ako là stn

 

9 tháng 5 2016

Ta thấy A = 1/2^2 + 1/3^2 + 1/4^2+...+ 1/2016^2

=> A < 1/(1.2) + 1/(2.3) + 1/(3.4) +....+ 1/(2015.2016)

=> A < 1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016

=> A < 1 - 1/2016 < 1

Mặt khác :1/2^2 > 0

1/3^2 > 0 

1/4^2 > 0

..........

1/2016^2 > 0

=> A > 0

=> 0<A<1

=> A ko phải số tự nhiên

Vậy a ko phải số tự nhiên

9 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}>0\)

           \(\frac{1}{3^2}>0\)

           ................

            \(\frac{1}{100^2}>0\)

\(\Rightarrow A>0\left(1\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

          \(\frac{1}{3^2}< \frac{1}{2.3}\)

           ...................

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< A< 1\)

Vậy A ko là STN.

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

Vậy A không phải là một số tự nhiên

13 tháng 4 2017

Bài 2:

Ta có: \(a=\frac{2n^2+1}{n^2-1}=\frac{2\left(n^2-1\right)+3}{n^2-1}=2+\frac{3}{n^2-1}\)

Để a nhận giá trị nguyên thì \(\left(n^2-1\right)\inƯ\left(3\right)\)={1;-1;3;-3}

Ta có bảng sau:

n^2-11-13-3
n^2204-2
n/02/

Vì n là số tự nhiên nên n \(\in\){0;2}

16 tháng 12 2016

bài này hay nhỉ