Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\)( BĐT cô-si dạng engel)
\(\frac{4}{2+a+b}\le\frac{4}{2+2\sqrt{ab}}=\frac{2}{1+\sqrt{ab}}=VP\)(bđt tương đương)
vậy cả hai bđt dấu "=" xảy ra đồng thời
\(\hept{\begin{cases}\frac{1}{1+a}=\frac{1}{1+b}\\a=b=1\end{cases}}\)
vậy \(\frac{1}{1+a}+\frac{1}{1+b}=\frac{2}{1+\sqrt{ab}}\)khi \(a=b=1\)
\(b,\)\(\frac{1}{1+a}+\frac{1}{1+b}>\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi bđt cô -si không xảy ra dấu bằng
và bđt tương đương xảy ra dấu bằng
\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}>\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)
\(\hept{\begin{cases}\frac{2+a+b}{1+a+b+ab}>\frac{4}{2+a+b}\\4+4\sqrt{ab}=4+2a+2b\end{cases}}\)
\(\hept{\begin{cases}4+a^2+b^2+4a+4b+2ab>4+4a+4a+4ab\\2\sqrt{ab}=a+b\end{cases}}\)
\(\hept{\begin{cases}a^2+b^2>2ab\\a^2+b^2=0\end{cases}}\)
\(0>2ab\)
\(ab< 0\)
rồi chia ra từng TH
ra đc \(TH1:\hept{\begin{cases}a< 0\\b>0\end{cases}}\)
\(TH2:\hept{\begin{cases}a>0\\b< 0\end{cases}}\)
\(c,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi
bđt cô- si dạng engel lớn hơn hoặc bằng còn bđt tương đương thì dấu bằng xảy ra
\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)
\(\hept{\begin{cases}a^2+b^2\ge2ab\\a^2+b^2=0\end{cases}}\)
\(< =>0\ge2ab\)
vì đề bài cho \(a,b>0\)lên dấu bằng không xảy ra
vậy không có giá trị a,b nào thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)
câu d lập luận như các câu trên cậu làm nốt nha
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017.\frac{1}{10}\)
\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)
Mà \(2017=a+b+c\) nên :
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\)
\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{b}{a+c}\right)=201,7\)
\(3+\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7\)
\(\Leftrightarrow M=\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7-3\)
\(\Leftrightarrow M=198,7\)
Vậy ...
Gọi cái vế trái của BĐT cần c/m là P
Áp dụng BĐT Cô-si dạng \(\frac{1}{a+b+c+x+y+z}\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = x = y = z
và \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = x = y = z
Ta có \(\frac{1}{10a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)}\)
\(\le\frac{1}{36}\left(\frac{1}{a+b}+\frac{1}{a+c}+4.\frac{1}{a+a}\right)\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{2}{a}\right]\)
\(=\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{2}{a}\right]\) (1)
Tương tự \(\frac{1}{10b+c+a}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{b}+\frac{1}{c}+\frac{1}{a}\right)+\frac{2}{b}\right]\) (2)
và \(\frac{1}{10c+a+b}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{c}+\frac{1}{a}+\frac{1}{b}\right)+\frac{2}{c}\right]\) (3)
Cộng (1), (2), (3) vế theo vế ta được
\(P\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)+\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\right]=...=\frac{1}{12}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Kết hợp \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}\) (theo đề bài) và BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Ta có \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{144}\left[\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\right]\)
\(\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)
Suy ra \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)
Đặt \(t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) thì \(\frac{1}{144}t^2\le\frac{1}{144}\left(\frac{1+t}{6}+\frac{2t^2}{3}\right)\)
\(\Leftrightarrow\) \(2t^2-t-1\le0\) \(\Leftrightarrow\) \(\frac{-1}{2}\le t\le1\)
Do đó \(P^2\le\frac{1}{144}t^2\le\frac{1}{144}.1^2=\frac{1}{144}\) \(\Rightarrow\) \(P\le\frac{1}{12}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(a=b=c=3\)
Đề phải là cho 1/a + 1/b + 1/c < = 1
Áp dụng tính chấ : 1/x+y < = 1/4.(1/x+1/y) thì :
A < = 1/4.(1/a+1/b+1/b+1/c+1/c+1/a)
= 1/2.(1/a+1/b+1/c)
< = 1/2 . 1 = 1/2
Dấu "=" xảy ra <=> a=b=c=3
Vậy .............
Tk mk nha
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
cái này toán lớp 6 nha
A=1/17.(17/1.18+.....+1/200/2017)
A=1/17.(1-1/2017)
B=1/2000.(200/1.2001+....+2000/17.2017)
B=1/2000.(1-1/2017)
=> A/B=1/17.(1-2017)/1/2000.(1-1/2017)=1/17.2000