Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1
... 1 slot.... biếng làm quá -.-. Tự nghĩ cách biến đổi nha, chừng nào thua thì ib :v
a) \(C=\dfrac{x^2-3x+1}{x^2+x+1}=5-\dfrac{4\left(x+1\right)^2}{x^2+x+1}\le5\)
\(C=\dfrac{x^2-3x+1}{x^2+x+1}=\dfrac{\dfrac{4}{3}\left(x-1\right)^2}{x^2+x+1}-\dfrac{1}{3}\ge\dfrac{-1}{3}\)
b) ......Tự làm, c) Tự làm
Ý kiến, ném đá gì thì ib
Câu 1:
Áp dụng BĐT Cô-si:
\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)
\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)
Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)
Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)
(do \(x+y\leq 1\) )
Áp dụng BĐT Cô-si:
\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)
\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)
Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)
Vậy \(B_{\min}=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Ta có:
\(A=\dfrac{x^2-x+1}{x^2+x+1}\)
\(=\dfrac{3x^2+3x+3-\left(2x^2+4x+2\right)}{x^2+x+1}\)
\(=3-\dfrac{2\left(x^2+2x+1\right)}{x^2+x+1}\)
\(=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\)
Ta thấy:
\(\dfrac{2\left(x+1\right)^2}{x^2+x+1}\ge0\forall x\)
\(\Rightarrow3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\forall x\)
hay \(A\le3\)
=> Max A = 3
Dấu \("="\) xảy ra khi và chỉ khi \(2\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
Lại có:
\(A=\dfrac{x^2-x+1}{x^2+x+1}\)
\(=\dfrac{3x^2-3x+3}{3x^2+3x+3}\)
\(=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}\)
\(=\dfrac{1}{3}+\dfrac{2x^2-4x+2}{3\left(x^2+x+1\right)}\)
\(=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)
Ta thấy :
\(\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge0\forall x\)
\(\Rightarrow\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\forall x\)
=> Min A = \(\dfrac{1}{3}\)
Dấu \("="\) xảy ra khi và chỉ khi \(2\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy Min A = \(\dfrac{1}{3}\) tại x = 1 Max A = 3 tại x = 1
Hàm số xác định \(\forall x\in R\)
Gọi yo là 1 giá trị của hàm số. Ta có:
\(y_o=\dfrac{x^2-x+1}{x^2+x+1}\)
\(\Rightarrow\left(y_o-1\right)x^2+\left(y_o+1\right)x+\left(y_o-1\right)=0\left(1\right)\)
a. Nếu yo=1:
\(\left(1\right)\Rightarrow2x=0\Leftrightarrow x=0\)
b.Nếu yo\(\ne1\)
Ta có: \(\Delta=\left(y_o+1\right)^2-4\left(y_o-1\right)^2\ge0\)
\(\Leftrightarrow-3y_o^2+10y_o-3\ge0\)
\(\Leftrightarrow\left(-3y_o+1\right)\left(y_o-3\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{3}\le y_o\le3\)
Vậy MinA=1/3 khi x=1
MaxA=3 khi x=-1
3.
\(A=\dfrac{2x+1}{x^2+2}=\dfrac{x^2+2-x^2+2x-1}{x^2+2}=\dfrac{\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2}\)
Ta có: \(\dfrac{\left(x-1\right)^2}{x^2+2}\ge0\forall x\in R\)
⇒ \(A=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le1\)
Vậy: \(Max_A=1\Leftrightarrow x=1\)
* \(A=\dfrac{2x+1}{x^2+2}=\dfrac{2\left(2x+1\right)}{2\left(x^2+2\right)}=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{-x^2-2+x^2+4x+4}{2\left(x^2+2\right)}\)
\(=-\dfrac{1}{2}+\dfrac{x^2+4x+4}{x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+2\right)^2}{x^2+2}\ge-\dfrac{1}{2}\)
Vậy: \(Min_A=-\dfrac{1}{2}\Leftrightarrow x=-2\)
* \(B=\dfrac{4x+3}{x^2+1}\) ( 1 cách khác)
\(\Rightarrow B\left(x^2+1\right)=4x+3\)
\(\Rightarrow Bx^2-4x+B-3=0\) (1) \(\left(a=B;b=-4,c=B-3\right)\)
* Với B = 0, pt (1) có nghiệm x = \(-\dfrac{3}{4}\)
* Với B ≠ 0, pt (1) có nghiệm khi và chỉ khi:
\(\Delta=b^2-4ac\ge0\)
\(\Rightarrow\left(-4\right)^2-4.B.\left(B-3\right)\ge0\)
\(\Rightarrow16-4B^2+12B\ge0\)
\(\Rightarrow\left(B-4\right)\left(B+1\right)\ge0\)
\(\Rightarrow-1\le B\le4\)
Suy ra: \(Min_B=-1\Leftrightarrow x=\dfrac{-b}{2a}=\dfrac{4}{2.\left(-1\right)}=-2\)
\(Max_B=4\Leftrightarrow x=\dfrac{-b}{2a}=\dfrac{4}{2.4}=\dfrac{1}{2}\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}=4\)
<=>\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) +\(2\left(\dfrac{c}{abc}+\dfrac{b}{abc}+\dfrac{a}{abc}\right)=4\)
<=> \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a+b+c}{abc}\right)=4\)
<=> \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{abc}{abc}\right)=4\) (vì a+b+c =abc)
<=> \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)
\(A=\dfrac{2x+1}{x^2+2}\)
*Min A:
Ta có: \(A=\dfrac{2x+1}{x^2+2}\)
\(=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{\left(x^2+4x+4\right)-\left(x^2+2\right)}{2\left(x^2+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x^2+1\right)}+\dfrac{1}{2}\ge\dfrac{1}{2},\forall x\in R\)
Vậy \(Min_A=\dfrac{1}{2}khi\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
*Max A:
Ta có: \(A=\dfrac{2x+1}{x^2+2}\)
\(=\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)
\(=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}\)
\(=\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)
\(=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le0,\forall x\in R\)
Vậy \(Max_A=1khi\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Lời giải:
$A=\frac{x^2-x+1}{x^2+x+1}$
$\Leftrightarrow A(x^2+x+1)-(x^2-x+1)=0$
$\Leftrightarrow x^2(A-1)+x(A+1)+(A-1)=0$
Coi đây là PT bậc 2 ẩn $x$. Vì $A$ tồn tại nên PT luôn có nghiệm, do đó:
$\Delta=(A+1)^2-4(A-1)^2\geq 0$
$\Leftrightarrow (3-A)(3A-1)\geq 0$
$\Leftrightarrow \frac{1}{3}\leq A\leq 3$
Vậy $A_{\max}=3$ và $A_{\min}=\frac{1}{3}$
Giá trị max đạt được khi $x=-1$ và min đạt được khi $x=1$