Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)
Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản
\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn
Vậy \(n=2k\left(k\in Z\right)\)
1,Gọi UCLN(n+1,n+2)=d
Ta có:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{n+1}{n+2}\)tối giản
đánh lại câu hỏi đi bạn
đọc ko hỉu cái quái gì hết trơn hết trọi
Đặt: ( n + 3 ; n - 2 ) = d ( d là số tự nhiên )
=> \(\hept{\begin{cases}n+3⋮d\\n-2⋮d\end{cases}}\Rightarrow\left(n+3\right)-\left(n-2\right)⋮d\Rightarrow5⋮d\)
=> d = 1 hoặc d = 5
Để A là phân số tối giản thì d = 1 => d khác 5
+) Với d = 5 => \(\hept{\begin{cases}n+3⋮5\\n-2⋮5\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮5\\n-2⋮5\end{cases}\Rightarrow}\left(2n+6\right)-\left(n-2\right)⋮5\Rightarrow n+8⋮5\)
=> Tồn tại số nguyên k sao cho : n + 8 = 5k => n = 5k - 8
=> n = 5k - 8 thì d = 5
=> n \(\ne\)5k - 8 thì d = 1
Vậy n \(\ne\)5k - 8 thì A là phân số tối giản.
\(A=1+\frac{5}{n-2}\)(n khác 2)
Để A là phân số tối giản => \(\frac{5}{n-2}\)là phân số tối giản
=> n-2 là số nguyên chẵn
=> n là số nguyên chẵn và n khác 2
Để M=n−1/n−2 là phân số tối giản thì ƯCLN (n – 1, n -2) = 1.
Gọi ƯCLN (n - l, n - 2) = d => n – 1 ⋮d; n – 2 ⋮d
=> ( n – 1) – ( n – 2) d => 1⋮d => d = 1 với mọi n. Vậy với mọi n ∈ℤ thì M=n−1/n−2 là phân số tối giản.
Em cảm ơn ạ🥰