Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để A là phân số.
=>2n-4 khác 0
=>2n khác 4
=>n khác 2
Vậy n khác 2 thì A là phân số.
b)Để A là số nguyên.
=>2n+2 chia hết cho 2n-4
=>2n-4+4+2 chia hết cho 2n-4
=>(2n-4)+6 chia hết cho 2n-4
=>6 chia hết cho 2n-4
=>2n-4=Ư(6)=(-1,-2,-3,-6,1,2,3,6)
Vì 2n-4=2.(x-2) là số chẵn.
=>2n-4=(-2,-6,2,6)
=>2n=(2,-2,6,10)
=>n=(1,-1,3,5)
Vậy n=1,-1,3,5 thì A là số nguyên.
A = \(\frac{2n+2}{2n}\) = \(\frac{2n}{2n}\) + \(\frac{2}{2n}\) = \(\frac{1}{n}\) + 1
Để A là phân số thì n phải khác 0.
Để A là số nguyên thì n phải là ước của 1
Suy ra n = 1 hoặc n = -1
Câu trả hay sẽ được cộng 2 điểm hỏi đáp nhớ giữ lời nhé!!!
a) Để A là một phân số
=> 2n-4 khác 0
=>2n khác 4
=> n khác 2
Vậy n khác 2 và n thuộc n thì A là một phân số .
b) Để A là số nguyên
=>2n+2 chia hết cho 2n-4
=>2n-4+6 chia hết cho 2n-4
Vì 2n-4 chia hết cho 2n-4
=> 6 chia hết cho 2n-4
=> 2n-4 thuộc Ư(6)
=> 2n-4 thuộc tập hợp 1;2;3;6;-1;-2;-3;-6
=>2n thuộc tập hợp 5;6;7;10;3;2;1;-2
=> n thuộc tập hợp 5/2;3;7/2;5;3/2;1;-1
Vì n thuộc N => n thuộc tập hợp 3;5;1
Sau đó bạn thử lại với từng trường hợp của n rồi kết luận là n thuộc tập hợp 3;5;1
Bạn bạn ơi hãy tk cho mik nha ! Mik đang âm điểm nek .
CHÚC CÁC BẠN HỌC THẬT TỐT ^.^
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
b, \(A=\dfrac{2n+2}{2n-4}=\dfrac{2n-4+6}{2n-4}=\dfrac{6}{2n-4}\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)