Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì 4n-2\(⋮\)n-2
=>n-2\(⋮\)n-2
=>4\(⋮\)n-2
=>n-2\(\in\)Ư(4)
hay n-2\(\in\){1;-1;2;-2;4;-4}
=>n={3;1;4;0;6;-2}
A = \(\dfrac{3n+1}{2n+3}\) (n \(\ne\) - \(\dfrac{3}{2}\))
A \(\in\) Z ⇔ 3n + 1 ⋮ 2n + 3
6n + 2 ⋮ 2n + 3
6n + 9 - 7 ⋮ 2n + 3
3.(2n + 3) - 7 ⋮ 2n + 3
7 ⋮ 2n + 3 ⇒ 2n + 3 \(\in\) Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
2n+3 | -7 | -1 | 1 | 7 |
n | -5 | -2 | -1 | 2 |
Vậy các số nguyên n thỏa mãn đề bài là:
n \(\in\) { -5; -2; -1; 2}
\(A=\dfrac{3n+1}{2n+3}\inℤ\) \(\left(n\ne-\dfrac{3}{2}\right)\)
\(\Rightarrow3n+1⋮2n+3\)
\(\Rightarrow2\left(3n+1\right)-3\left(2n+3\right)⋮2n+3\)
\(\Rightarrow6n+2-6n-9⋮2n+3\)
\(\Rightarrow-7⋮2n+3\)
\(\Rightarrow2n+3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow n\in\left\{-2;-1;-5;2\right\}\)
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
Ta co:
n = n - 1 + 1
Để số hữu tỉ đã cho là số nguyên thì 1 ⋮ (n - 1)
⇒ n - 1 ∈ {-1; 1}
⇒ n ∈ {0; 2}
Để A=\(\frac{2n-1}{3-n}\)là 1 số nguyên thì : 2n-1\(⋮\)3-n(1)
Ta lại có : 3-n\(⋮\)3-n <=> 2(3-n)\(⋮\)3-n <=> 6-2n\(⋮\)3-n(2)
Từ (1) và (2) suy ra : (2n-1)+(6-2n)\(⋮\)3n-1<=>5\(⋮\)3n-1 =>3n-1 \(\in\)Ư(5)
Mà Ư(5)=(1;-1;5;-5) nên ta có bảng sau
sai ở bảng trên , bảng đúng đây nè :
3n-1 | 1 | -1 | 5 | -5 |
n | 3/2 | 0 | 2 | -4/3 |
Mà n là số nguyên nên n\(\in\)(0;2) thì A có giá trị là số nguyên
Bạn Hiểu Ngân ơi,phần dưới kia phải là (2n-1) +(6-2n) chia hết cho (3-n) chứ
sao thấy giống bài lớp 6 :v
\(A=\dfrac{2n-1}{3-n}\\ A=\dfrac{2\left(n-3\right)+5}{-\left(n-3\right)}\\ A=-2+\dfrac{5}{3-n}\)
để \(A=\dfrac{2n-1}{3-n}\) nguyên thì \(\dfrac{5}{n-3}\) nguyên
\(\Rightarrow\left(3-n\right)\in\text{Ư}\left(5\right)=\left\{1;-1;5;-5\right\}\\ \Rightarrow n\in\left\{-2;2;4;8\right\}\)
vậy............
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
Ta có: \(\left(2n-1\right)\div\left(3-n\right)\) dư 4
\(\Rightarrow3-n\inƯ\left(4\right)\)
\(\Rightarrow3-n\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;4;1;5;-1;7\right\}\)