\(A=\dfrac{1}{1.18}+\dfrac{1}{2.19}+\dfrac{1}{3.20}+...+\dfrac{1}{2000.2017}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

cái này toán lớp 6 nha

A=1/17.(17/1.18+.....+1/200/2017)

A=1/17.(1-1/2017)

B=1/2000.(200/1.2001+....+2000/17.2017)

B=1/2000.(1-1/2017)

=> A/B=1/17.(1-2017)/1/2000.(1-1/2017)=1/17.2000

2 tháng 7 2017

b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 cái kia rồi cộng lại

\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)

2 tháng 7 2017

Mik ko hỉu pn ơi, ngay bước đầu ý

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a)

Sử dụng pp biến đổi tương đương:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)

Ta có đpcm.

b) Áp dụng công thức của phần a ta có:

\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)

Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)

Do đó:

\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)

Cộng theo vế các BĐT trên thu được:

\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)

\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

10 tháng 8 2017

cậu đăng cho z cx vt sai kìa Ca-Ton -Kit

10 tháng 8 2017

Ta có:\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=1\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=1+2\left(\dfrac{a+b+c}{abc}\right)\)\(\Rightarrow2\left(\dfrac{a+b+c}{abc}\right)=0\Rightarrow a+b+c=0\)

Đề có sai gì không vậy bạn

24 tháng 7 2018

1)

Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM

2 tháng 6 2018

Đang rảnh, làm luôn\(A=\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}=\dfrac{1}{2}\left[\left(\dfrac{a}{bc}+\dfrac{b}{ca}\right)+\left(\dfrac{b}{ca}+\dfrac{c}{ab}\right)+\left(\dfrac{c}{ab}+\dfrac{a}{bc}\right)\right]\ge\dfrac{1}{2}\left(\dfrac{2}{c}+\dfrac{2}{a}+\dfrac{2}{b}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 2

2 tháng 6 2018

Ghép đối xứng