Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
1) \(1019x^2+18y^4+1007z^2\)
\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)
\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)
Biến đổi vế trái ta có:
\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(ac+bc+c^2+ab\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)*
Vì \(a+b+c=0\)\(\Rightarrow\)*\(=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
cũng có \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) Thay vào biểu thức trên ta được
\(-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3abc\)
\(VT=VP\)=> đpcm
vì \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
ta có \(B=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
mà \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Rightarrow B=xyz.\dfrac{3}{xyz}=3\)
Lười không muốn viết nên mình gợi ý thôi nhé
Câu a) bạn áp dụng hằng dẳng thức \(a^3+b^3\) rồi rút gọn
Câu b) Quy đồng mẫu thức rồi rút gọn
Chúc bạn học tốt!
a,
\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-\right)^3\)
\(=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left[\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)+\left(\sqrt{2}-1\right)^2\right]\)
\(=2\left(2+2\sqrt{2}+1+2-1+2-2\sqrt{2}+1\right)\)
\(=2.7=14\)
Ta có: \(a+b=\dfrac{-1+\sqrt{2}}{2}+\dfrac{-1-\sqrt{2}}{2}=-1\)
\(ab=\dfrac{-1+\sqrt{2}}{2}.\dfrac{-1-\sqrt{2}}{2}=\dfrac{-1}{4}\)
\(\left(a+b\right)^2=a^2+b^2+2ab=1\)
\(\Rightarrow a^2+b^2+2.\dfrac{-1}{4}=1\)\(\Rightarrow a^2+b^2=\dfrac{3}{2}\) (1)
\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=-1\)
\(\Rightarrow a^3+b^3+3.\dfrac{-1}{4}.\left(-1\right)=-1\)\(\Rightarrow a^3+b^3=\dfrac{-7}{4}\) (2)
Từ (1) và (2) suy ra \(\left(a^2+b^2\right)\left(a^3+b^3\right)=\dfrac{3}{2}.\dfrac{-7}{4}=\dfrac{-21}{8}\)
\(\Rightarrow a^5+a^3b^2+a^2b^3+b^5=\dfrac{-21}{8}\)
\(\Rightarrow a^5+b^5+a^2b^2\left(a+b\right)=\dfrac{-21}{8}\)
\(\Rightarrow a^5+b^5+\dfrac{1}{16}.\left(-1\right)=\dfrac{-21}{8}\)\(\Rightarrow a^5+b^5=\dfrac{-41}{16}\) (3)
Từ (1) và (3) suy ra \(\left(a^2+b^2\right)\left(a^5+b^5\right)=\dfrac{3}{2}.\dfrac{-41}{16}=\dfrac{-123}{32}\)
\(\Rightarrow a^7+a^5b^2+a^2b^5+b^7=\dfrac{-123}{32}\)
\(\Rightarrow a^7+b^7+a^2b^2\left(a^3+b^3\right)=\dfrac{-123}{32}\)
\(\Rightarrow a^7+b^7+\dfrac{1}{16}.\dfrac{-7}{4}=\dfrac{-123}{32}\)\(\Rightarrow a^7+b^7=\dfrac{-239}{64}\)
Vậy \(a^7+b^7=\dfrac{-239}{64}\)