Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: AD là phân giác của BAC (gt)
=> góc A1 = góc A2
Lại có AB // ED (gt)
=> góc A1 = góc D1 ( 2 góc so le trong )
Mà góc A1 = góc A2 ( cmt )
=> góc A2 = góc D1
=> Tam giác EAD cân tại E
=> EA = ED ( đ/n tam giác cân )
Mặt khác : AB // ED cắt EF // BC => BF = ED (tính chất đoạn chắn)
Mà EA = ED => BF = AE ( đpcm )
( * Tính chất đoạn chắn học ở lớp 7 rồi nhé bạn :3 . Hai đoạn thẳng song song chắn giữa 2 đường thẳng song song thì bằng nhau ( tính chất đoạn chắn )

bạn tự vẽ hinh nha
1)
Xét tam giác ABC có
hai đường cao BE và CD cắt nhau tại H nên H là trực tâm
do đó \(AH\perp BC\)
mà \(HM\perp BC\)
suy ra AH trùng với HM
vậy A; H; M thẳng hàng
b)
dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)
dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)
2)
a)
Xét tam giác ABC và tam giác DEC
có \(\widehat{BAC}=\widehat{CDE}\)
\(\widehat{ACB}\)chung
nên tam giác ABC đồng dạng với tam giác DEC
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)
b)
Xét tam giác ABC
có AD là đường phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)
Từ (1) và (2) suy ra
\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)

minh gợi ý theo cách của mình là:
A B C M F Vì góc BAH là phân giác nên ta có:
\(\frac{AB}{BE}=\frac{AH}{HE}\) ( hãy chứng minh \(\frac{AB}{BE}=\frac{AF}{EC}\)nếu họ nói chứng minh CF ss AE thì ta có : \(\frac{AH}{AF}=\frac{EH}{EC}\)hay \(\frac{AH}{HE}=\frac{ÀF}{EC}\)) vì hai tỉ số trên cùng bằng \(\frac{AH}{HE}\)sau đó tự chứng minh ....

a, xét tam giác ABD và tam giác ACD có : AD chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAD = góc CAD do AD là phân giác của góc BAC (gt)
=> tam giác ABD = tam giác ACD (c-g-c)
b, tam giác ABD = tam giác ACD (câu a)
=> BD = DC (đn) mà D nằm giữa B; C
=> D là trung điểm của BC (đn)
=> AD là trung tuyến
CF là trung tuyến
CF cắt AD tại G
=> G là trong tâm của tam giác ABC (đl)
c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow\)tam giác EDC cân tại E
D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)
Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC
\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng