K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

sai đề

26 tháng 11 2017

-_-"

tớ thấy nó cứ sao sao ý !

như kiểu là đề sai

14 tháng 8 2015

gt <=>(a^2+b^2+c^2+d^2-ab-bc-cd-da)*2=0

<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2cd+d^2+d^2-2da+a^2=0

<=>(a-b)^2+(b-c)^2+(c-d)^d+(d-a)^2=0

Mà:

(a-b)>=0...

=>(a-b)^2+(b-c)^2+(c-d)^d+(d-a)^2>=0

=>(a-b)^2+(b-c)^2+(c-d)^d+(d-a)^2=0 khi a=b=c=d

Khi đó N=4/3

16 tháng 7 2018

Ta có : \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=k\)

          \(\Rightarrow k^2=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)

        \(\Rightarrow k^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

        \(\Rightarrow k^2=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

Và \(k.k=\frac{a}{c}.\frac{b}{d}\)

 \(\Rightarrow k^2=\frac{ab}{cd}\left(2\right)\)

Từ (1) và (2) , ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

7 tháng 5 2017

a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)

<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)

<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)

=>a=b=c=d

=> ABCD là hình thoi

19 tháng 12 2016

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)

Dấu "=" xảy ra khi \(x=1\)

Bài 2:

Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)

\(ab+cd\ge2\sqrt{abcd}=2\) (2)

\(ac+bd\ge2\sqrt{acbd}=2\) (3)

\(ad+bc\ge2\sqrt{adbc}=2\) (4)

Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh

Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)

 

19 tháng 12 2016

1) \(x+\frac{1}{x}\ge2\left(1\right)\)

<=> \(\frac{x^2+1}{x}\ge2\)

<=> x2 + 1 \(\ge\)2x

<=> x2 + 1 - 2x \(\ge\) 0

<=> (x - 1)2 \(\ge\)0 (2)

Bđt (2) đúng vậy bđt (1) được chứng minh

b) Áp dụng bđt AM-GM cho 10 số dương ta có:

a2+b2+c2+d2+ab+ac+ad+bc+bd+cd

\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)

\(=10\sqrt[10]{1}=10\left(đpcm\right)\)

 

22 tháng 8 2019

1.Ta co:\(\frac{AB}{BC}.\frac{BC}{CD}=\frac{5}{7}.\frac{7}{9}=\frac{5}{9}\)

\(\Rightarrow\frac{AB}{CD}=\frac{5}{9}\)

2.Tu gia thuyet suy ra:\(\frac{AB}{5}=\frac{BC}{7}=\frac{CD}{9}\)

Dat \(\frac{AB}{5}=\frac{BC}{7}=\frac{CD}{9}=k\)

\(\Rightarrow\hept{\begin{cases}AB=5k\\BC=7k\\CD=9k\end{cases}}\)

Theo de bai ta co:\(AB+BC+CD=5k+7k+9k=21k=84\)

\(\Rightarrow k=4\)

\(\Rightarrow\hept{\begin{cases}AB=5k=20\\BC=7k=28\\CD=9k=36\end{cases}}\)

:)