Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
Ta có:
\(\dfrac{a}{b}=ab\Rightarrow a=\dfrac{a}{b^2}\Rightarrow b^2=1\Rightarrow\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
+) Nếu b=1 \(\Rightarrow ab=a+b\Rightarrow a=a+1\left(vôlí\right)\)
+) Nếu \(b=-1\Rightarrow ab=a+b\Rightarrow-a=a-1\Rightarrow a=\dfrac{1}{2}\)
\(T=a^2+b^2=\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2=\dfrac{1}{4}+1=\dfrac{5}{4}\)
ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1
+) Nếu b=1 ⇒ab=a+b⇒a=a+1(vôlí)⇒ab=a+b⇒a=a+1(vôlí)
+) Nếu b=−1⇒ab=a+b⇒−a=a−1⇒a=12b=−1⇒ab=a+b⇒−a=a−1⇒a=12
T=a2+b2=(12)2+(−1)2=14+1=54
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(1\right)\)
Mà \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\Leftrightarrow\dfrac{a}{b}=\dfrac{c^2}{b^2}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\tođpcm\)
\(b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)
\(\Leftrightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\left(đpcm\right)\)
\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)
Ta có:
\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)
\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)
\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)
\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Đồng thời:
\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự:
\(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
Từ đó:
\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)
\(\left\{{}\begin{matrix}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{b}{c}=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow P=1+1+1=3\)