K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Áp dụng bất đẳng thức... mình không biết tên mình mới lớp 7 thui ( có thể là Côsi, AM-GM, Cauchy... )  ta có : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\)\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) ( đpcm ) 

Vậy 

23 tháng 10 2018

Đứa nào đăng lại câu hồi xưa nhục vc -,- 

Cách 1 : 

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}=9\) ( Cosi 2 lần ) 

Cách 2 : 

\(VT=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\) ( Cosi 2 tích ) 

Cách 3 : 

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}=9\) ( Cauchy-Schwarz dạng Engel ) 

Chúc bạn học tốt ~ 

31 tháng 1 2020

\(VT-VP=\frac{\Sigma_{cyc}\left(a-b+c\right)\left(a-b\right)^2}{abc}\ge0\) ( do a,b,c là 3 cạnh của 1 tam giác ) 

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

4 tháng 8 2015

DÀi lắm 

16 tháng 2 2019

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Áp dụng BĐT cô-si : x + y \(\ge\)\(2\sqrt{xy}\)

Ta có : \(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2=9\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

16 tháng 2 2019

Thêm điều kiện: a,b,c>0

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

5 tháng 8 2015

<=> \(2\left(\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+b}\right)\ge9\)

<=> \(1+\frac{b}{a+c}+1+\frac{a}{b+c}+1+\frac{c}{a+b}\) \(\ge\frac{9}{2}=4,5\)

<=> \(\frac{b}{a+c}+\frac{a}{b+c}+\frac{c}{a+b}\ge4,5-3=1,5\)

BẬy giowg  CM BĐT 

     \(\frac{b}{a+c}+\frac{a}{b+c}+\frac{c}{a+b}\ge1,5\) là xong 

5 tháng 8 2015

uk