\(\)Cho a,b,x,y là các số thực thỏa mãn \(\begin{align} \be...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2020

\(c^2=\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge\frac{c^2}{a^2+b^2}\) (đpcm)

27 tháng 7 2020

Nếu làm như kia thì fải là nhỏ hơn hoặc bằng chứ
Nhân chia đổi chiều mà

5 tháng 9 2019

Ta có:

a + b + c = 0

=> (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ac) = 0

Lại có a2 + b2 + c2 = 1

=> 1 + 2(ab + bc+ ac) = 0

<=> ab + bc + ac = \(\frac{-1}{2}\)

<=> (ab + bc + ac)2 = a2b2 + b2c2 + a2c2 + 2a2bc + 2ab2c + 2abc2 = \(\frac{1}{4}\)

<=> a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\frac{1}{4}\)

<=> a2b2 + b2c2 + a2c2 + 2abc.0 = \(\frac{1}{4}\)

<=> a2b2 + b2c2 + a2c2 = \(\frac{1}{4}\)

Có: (a2 + b2 + c2)2 = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 12 = 1

<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 1

<=> a4 + b4 + c4 + 2.\(\frac{1}{4}\) = 1

<=> a4 + b4 + c4 = \(\frac{1}{2}\)

9 tháng 6 2016

Ta có: \(a+b+c=abc\)

=>\(\frac{a+b+c}{abc}=1\)

=>\(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\)

=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

=>\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

=>ĐPCM

9 tháng 6 2016

À thấy rồi, làm nè :

Ta có 1/a^2 + 1/b^2 + 1/c^2 
= (1/a + 1/b + 1/c)^2 - 2 (1/ab + 1/ac + 1/bc) 
= 4 - 2 (c/abc + b/ abc + a/ abc) 
= 4 - 2 (a+b+c)/abc 
= 4 - 2abc / abc 
= 4 - 2 
= 2 (đpcm)

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>

25 tháng 7 2019

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

25 tháng 7 2019

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

25 tháng 7 2019

a) 

Đặt \(A=9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x+1+1\)

\(=\left(3x+1\right)^2+1\)

Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)

Hay \(A\ge1>0;\forall x\)

Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức

25 tháng 7 2019

\(a,9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x.1+1^2+1\)

\(=\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

\(\Rightarrow9x^2-6x+2>0\forall x\)

\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

\(\Rightarrow x^2+x+1>0\forall x\)

5 tháng 1 2018

a, x^3-y^2-y=1/3

=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0

=> x > 0 

Tương tự : y,z đều > 0

Tk mk nha

6 tháng 1 2018

ta có hpt

<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)

Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)

Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)

=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)

=>\(y\ge z\) (2)

với y>= z, từ pt(2) =>z>=x (3)

Từ 91),(2),(3)

=> x=y=z>0 (ĐPCM)

Với x=y=z>0, thay vào pt(1), Ta có 

\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)

<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)

<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V

^_^