\(thuộc\) R. Chứng minh 2(a4+b4)lớn hơn hoặc bằng ab3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Ta có: \(2\left(a^4+b^4\right)-\left(ab^3+a^3b+2a^2b^2\right)\)

\(=\left(a^2-b^2\right)^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có đpcm

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

18 tháng 8 2019

a) \(5x^2-4x=9\)

\(5x^2-4x-9=0\)

\(5x^2+5x-9x-9=0\)

\(5x\left(x+1\right)-9\left(x+1\right)=0\)

\(\left(x+1\right)\left(5x-9\right)=0\)

\(\hept{\begin{cases}x+1=0\\5x-9=0\end{cases}}\)

\(\hept{\begin{cases}x=-1\\x=\frac{9}{5}\end{cases}}\)

18 tháng 8 2019

b) \(4x^2-2x+\frac{1}{4}\) với x = 0,25

Thay x = 0,25 vào biểu thức, ta có:

\(4.\left(0,25\right)^2-2.\left(0,25\right)+\frac{1}{4}=0\)

18 tháng 8 2019

Bài 2:

a)20182+4.2018-202+4

=2018.2018+4.2018-404

=2018.(2018+4)-404

=2018.2022-404

=4 079 992

18 tháng 8 2019

Bài 1:

a)5x2-4x=9

5.x.x-4.x=9

3x.(5-4)  =9

 3x.1       =9

 3x          =9:1

 3x          =9

  x           =9:3

  x            =3

5 tháng 4 2019

a)

\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^3+2b^3\ge a^3+ab^2+a^2b+b^3\)

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-ab^2-a^3-b^3\ge0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Vì a , b > 0 nên BĐT trên đúng, mà các phép biến đổi là tương đương

=> ĐPCM

b) Ta có

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

\(\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3ab^2+3a^2b\)

\(\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\)

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Theo câu a , có phần trong ngoặc luôn lớn hơn hoặc bằng 0

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Các phép biến đổi là tương đương => ĐPCm

5 tháng 4 2019

\(\left(a+b\right)^4=a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(8\left(a^4+b^4\right)\ge\left(a+b\right)^4\)

\(\Leftrightarrow8\left(a^4+b^4\right)\ge a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(\Leftrightarrow7\left(a^4+b^4\right)\ge4a^3b+6a^{^2}b^2+4ab^3\)

\(\Leftrightarrow7a^4+7b^4-4a^3b-6a^2b^2-4ab^3\ge0\)

\(\Leftrightarrow4a^3\left(a-b\right)-4b^3\left(a-b\right)+3\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow4\left(a-b\right)^2\left(a^2+ab+b^2\right)+3\left(a^2-b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra

<=> a=b

\(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)

\(\Leftrightarrow a^4+2a^2b^2+b^4-a^3b-2a^2b^2-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> a=b

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1