Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh bất đẳng thức phụ (*) sau : \(\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{2}\)
\(< =>\left(x^2+y^2\right)2\ge\left(x+y\right)^2< =>2x^2+2y^2\ge x^2+y^2+2xy\)
\(< =>2x^2+2y^2-x^2-y^2-2xy\ge0< =>x^2-2xy+y^2\ge0< =>\left(x-y\right)^2\ge0\)*đúng*
Sử dụng bất đẳng thức (*) ta có : \(Q=\frac{\left(a+\frac{1}{b}\right)^2}{1}+\frac{\left(b+\frac{1}{a}\right)^2}{1}\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}=\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\)
Tiếp tục ta sẽ chứng minh bất đẳng thức phụ (**) sau : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(< =>\left(a+b\right)^2\ge4ab< =>a^2+b^2+2ab-4ab\ge0< =>\left(a-b\right)^2\ge0\)*đúng*
Áp dụng bất đẳng thức (**) ta được : \(\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}=\frac{\left[1+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}\)
\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Khi đó \(Q\ge\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Vậy ta có điều phải chứng minh
Cách 1:
Áp dụng bất đẳng thức Bu-nhi-a ta có:
(a^2+b^2+c^2)(1+1+1)>=(a+b+c)^2
<=> 3(a^2+b^2+c^2)>=1
<=> a^2+b^2+c^2>=1/3
=> đẳng thức được chúng minh
Cách 2:
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3
P/s: 2 cách làm theo cách nào cx đc
Ko chắc âu nhé mới lớp 6 thôi
Bài 1:
$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$
Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$
Mà $a+b+c=3$ nên $a=b=c=1$
$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)
Dấu "=" xảy ra <=> a = b và a^2 +b^2 = 10; a, b> 0 <=> a = b = \(\sqrt{5}\)
Áp dụng BĐT Cauchy - Schwars ta có:
\(Q\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}\).
Áp dụng BĐT Schwars ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\).
Do đó: \(a+\frac{1}{b}+b+\frac{1}{a}=\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\ge5\Rightarrow Q\ge\frac{25}{2}\).
Vậy Min Q = \(\frac{25}{2}\Leftrightarrow a=b=\frac{1}{2}\).