K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

Áp dụng BĐT Cauchy - Schwars ta có:

\(Q\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}\).

Áp dụng BĐT Schwars ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\).

Do đó: \(a+\frac{1}{b}+b+\frac{1}{a}=\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\ge5\Rightarrow Q\ge\frac{25}{2}\).

Vậy Min Q = \(\frac{25}{2}\Leftrightarrow a=b=\frac{1}{2}\).

13 tháng 9 2020

Ta sẽ chứng minh bất đẳng thức phụ (*) sau : \(\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{2}\)

\(< =>\left(x^2+y^2\right)2\ge\left(x+y\right)^2< =>2x^2+2y^2\ge x^2+y^2+2xy\)

\(< =>2x^2+2y^2-x^2-y^2-2xy\ge0< =>x^2-2xy+y^2\ge0< =>\left(x-y\right)^2\ge0\)*đúng*

Sử dụng bất đẳng thức (*) ta có : \(Q=\frac{\left(a+\frac{1}{b}\right)^2}{1}+\frac{\left(b+\frac{1}{a}\right)^2}{1}\ge\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}=\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\)

Tiếp tục ta sẽ chứng minh bất đẳng thức phụ (**) sau : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(< =>\left(a+b\right)^2\ge4ab< =>a^2+b^2+2ab-4ab\ge0< =>\left(a-b\right)^2\ge0\)*đúng*

Áp dụng bất đẳng thức (**) ta được : \(\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}=\frac{\left[1+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}\)

\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\) 

Khi đó \(Q\ge\frac{\left[\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)

Vậy ta có điều phải chứng minh

13 tháng 9 2020

dòng cuối là : Vậy GTNN của Q = 25*2 khi a = b = 1/2

30 tháng 8 2017

HELP ME PLEASE!

THANKS YOU~~~!

30 tháng 8 2017

Cách 1:

Áp dụng bất đẳng thức Bu-nhi-a ta có: 

(a^2+b^2+c^2)(1+1+1)>=(a+b+c)^2 
<=> 3(a^2+b^2+c^2)>=1 
<=> a^2+b^2+c^2>=1/3 
=> đẳng thức được chúng minh

Cách 2:

 (a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1 
=> a² + b² + c² ≥ 1/3 

dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3

P/s: 2 cách làm theo cách nào cx đc

       Ko chắc âu nhé mới lớp 6 thôi

12 tháng 10 2021

a+b+c=3 nha (quên bổ sung)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Mà $a+b+c=3$ nên $a=b=c=1$

$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

5 tháng 8 2017

Trả lời gấp giùm mình nha! Ngày mai mình kiểm tra rồi. Rất mong các bạn trả lời sớm nhất

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

12 tháng 6 2020

\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)

Dấu "=" xảy ra <=> a = b và a^2 +b^2 = 10; a, b> 0 <=> a = b = \(\sqrt{5}\)