Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có \(\frac{2+a}{1+b}+\frac{1-2b}{1+2b}=\frac{1+a+1}{1+a}+\frac{2-\left(1+2b\right)}{1+2b}=\frac{1}{1+a}+\frac{2}{1+2b}\)
sử dụng bất đẳng thức Cauchy-Schwwarz ta có:
\(\frac{1}{1+a}+\frac{2}{1+2b}=\frac{1}{1+a}+\frac{1}{\frac{1}{2}+b}\ge\frac{4}{1+a+\frac{1}{2}+b}\ge\frac{4}{1+\frac{1}{2}+2}=\frac{8}{7}\)do a+b =<2
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=2\\1+a=\frac{1}{2}+b\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{5}{4}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\left(x-2\right)^2\ge0\forall x\Leftrightarrow x^2-4x+4\ge0\Leftrightarrow x^2\ge4\left(x-1\right).\)
\(\Rightarrow\frac{x^2}{x-1}\ge4\)(với x>1) Dấu '=' xảy ra khi x-2=0 <=> x=2 (TMĐK)
Áp dụng bất đẳng thức trên cho a,b,c >1 ta được
\(\frac{a^2}{a-1}\ge4\); \(\frac{2b^2}{b-1}\ge2.4=8\); \(\frac{2017c^2}{c-1}\ge2017.4=8068\)
Suy ra \(M=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{2017c^2}{c-1}\ge4+8+8068=8080\)
Vậy giá trị nhỏ nhất của M=8080 khi a=b=c=2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)
\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{\left(2+a\right)\left(1+2b\right)+\left(1-2b\right)\left(1+a\right)}{\left(1+a\right)\left(1+2b\right)}=\frac{2a+2b+3}{\left(1+a\right)\left(1+2b\right)}.\)
Ta có: \(\left(2+2a\right)\left(1+2b\right)\le\frac{\left(2+2a+1+2b\right)^2}{4}=\frac{\left(2a+2b+3\right)^2}{4}\)
\(\Rightarrow\left(1+a\right)\left(1+2b\right)\le\frac{\left(2a+2b+3\right)^2}{8}.\)
\(\Rightarrow\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{2a+2b+3}{\left(1+a\right) \left(1+2b\right)}\ge\frac{2a+2b+3}{\frac{\left(2a+2b+3\right)^2}{8}}=\frac{8}{2a+2b+3}\ge\frac{8}{2.2+3}=\frac{8}{7}.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)
\(E=\frac{2+a}{1+a}+\frac{1-2b}{1+2b}\)
\(=\frac{1+a+1}{1+a}+\frac{-\left(1+2b\right)+1}{1+2b}\)
\(=1+\frac{1}{1+a}-1+\frac{1}{1+2b}\)
\(=\frac{1}{1+a}+\frac{1}{1+2b}\)
\(a+b\le2\Rightarrow a\le2-b\)
Đến đây đưa được về biến b rồi ó,giờ thì đạo hàm làm nốt nha !
bạn có thể làm nốt cho mk đc ko , mk ko biết đạo hàm là gì cả ?