\(a+b\le1\)

CMR \(a+b+\frac{1}{a}+\frac{1}{b}\ge5\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

8 tháng 9 2017

Sủa đề \(cmr:a+b+\frac{1}{a^2}+\frac{1}{b^2}\ge5\)

\(a+b+\frac{1}{a^2}+\frac{1}{b^2}=\left(a+a+\frac{1}{a^2}\right)+\left(b+b+\frac{1}{b^2}\right)-\left(a+b\right)\)

Áp dụng bất đẳng thức Cauchy ta có :

\(a+a+\frac{1}{a^2}\ge3\sqrt[3]{a.a.\frac{1}{a^2}}=3\)

\(b+b+\frac{1}{b^2}\ge3\sqrt[3]{b.b.\frac{1}{b^2}}=3\)

\(\Rightarrow\left(a+a+\frac{1}{a^2}\right)+\left(b+b+\frac{1}{b^2}\right)-\left(a+b\right)\ge3+3-1=5\)(đpcm)

12 tháng 10 2017

Ta có : \(\frac{1}{c+2}=1-\frac{1}{a+2}-\frac{1}{b+2}=\left(\frac{1}{2}-\frac{1}{a+2}\right)+\left(\frac{1}{2}-\frac{1}{b+2}\right)\)

                         \(=\frac{a}{2\left(a+2\right)}+\frac{b}{2\left(b+2\right)}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\)

tương tự : \(\frac{1}{b+2}\ge\sqrt{\frac{ca}{\left(c+2\right)\left(a+2\right)}}\)

                  \(\frac{1}{a+2}\ge\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\)

Nhân vế theo vế \(\Rightarrow dpcm\)

31 tháng 7 2019

Akai Haruma

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-\underbrace{\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)}_{M}\)

Áp dụng BĐT Cauchy-Schwarz:

\(M=\frac{(a+b)^2}{(a+b)(a+b+1)}+\frac{(b+c)^2}{(b+c)(b+c+1)}+\frac{(c+a)^2}{(c+a)(c+a+1)}\geq \frac{4(a+b+c)^2}{(a+b)(a+b+1)+(b+c)(b+c+1)+(c+a)(c+a+1)}\)

\(=\frac{4(a^2+b^2+c^2+2ab+2bc+2ac)}{2(a^2+b^2+c^2+ab+bc+ac)+2(a+b+c)}\geq \frac{4(a^2+b^2+c^2+2ab+2bc+2ac)}{2(a^2+b^2+c^2+ab+bc+ac)+2(ab+bc+ac)}=2\) (do $a+b+c\leq ab+bc+ac$)

Vậy $M\geq 2$

$\Rightarrow \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\leq 1$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

15 tháng 6 2017

Ẹt số xui đưa link cũng bị duyệt

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại

\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

Nhân theo vế 4 BDT trên ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

Hay ta có ĐPCM

19 tháng 3 2017

Ha ~! Vẫn còn sót bài này

\(BDT\Leftrightarrow\frac{1-a}{1+a}+\frac{1-b}{1+b}+2\sqrt{\frac{\left(1-a\right)\left(1-b\right)}{\left(1+a\right)\left(1+b\right)}}\)

\(\le\frac{1-a-b}{1+a+b}+1+2\sqrt{\frac{1-a-b}{1+a+b}}\)

Và \(\frac{2\left(1-ab\right)}{1+ab+a+b}+2\sqrt{\frac{1+ab-a-b}{1+ab+a+b}}\)\(\le\frac{2}{1+a+b}+2\sqrt{\frac{1-a-b}{1+a+b}}\)

Đặt \(\hept{\begin{cases}u=ab\\v=a+b\end{cases}\left(u,v\ge0\right)}\) khi đó cần c/m:

\(\frac{2\left(1-u\right)}{1+u+v}+2\sqrt{\frac{1+u-v}{1+u+v}}\le\frac{2}{1+v}+2\sqrt{\frac{1-v}{1+v}}\)

Biến đổi tương đương ta có: 

\(\frac{1+u-v}{1+u+v}-\frac{1-v}{1+v}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)

\(\Leftrightarrow\frac{2uv}{\left(1+u+v\right)\left(1+v\right)}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)

Nếu \(u=0\) BĐT hiển nhiên đúng. Với \(u>0\) BĐT tương đương với:

\(\frac{2v}{2+v}\le\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\left(1\right)\)

Mà khi \(u>0\) ta có: \(\frac{1+u-v}{1+u+v}\ge\frac{1-v}{1+v}\)

Nên \(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{\frac{1-v}{1+v}}=2\sqrt{-1+\frac{2}{1+v}}\)

Hơn nữa ta có: \(v\le\frac{4}{5}\Rightarrow\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{-1+\frac{2}{1+\frac{4}{5}}}=\frac{2}{3}\)

Ngoài ra do \(v\le\frac{4}{5}< 1\Rightarrow\frac{2v}{1+v}=\frac{2}{\frac{2}{v}+1}< \frac{2}{3}\)

Do vậy \(\left(1\right)\) đúng, BĐT đầu được c/m

10 tháng 7 2017

1) Đặt \(\dfrac{b\sqrt{a-1}+a\sqrt{b-1}}{ab}\) là A

\(\)\(A=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-1}}{b}\)

\(\left(\dfrac{\sqrt{a-1}}{a}\right)^2=\dfrac{a-1}{a^2}=\dfrac{1}{a}-\dfrac{1}{a^2}=\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)\)

\(\Rightarrow\)\(\dfrac{\sqrt{a-1}}{a}=\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\)

Tương tự: \(\dfrac{\sqrt{b-1}}{b}=\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\)

Áp dụng BĐT Cauchy, ta có:

\(\sqrt{\dfrac{1}{a}\left(1-\dfrac{1}{a}\right)}\le\dfrac{\dfrac{1}{a}+\left(1-\dfrac{1}{a}\right)}{2}=\dfrac{1}{2}\)

Tương tự: \(\sqrt{\dfrac{1}{b}\left(\dfrac{1}{b}-1\right)}\le\dfrac{1}{2}\)

Cộng vế theo vế của 2 BĐT vừa chứng minh, ta được:

\(A\le1\left(đpcm\right)\)

11 tháng 7 2017

Xét: \(a^2+\dfrac{2}{a^3}=\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{3}a^2+\dfrac{1}{a^3}+\dfrac{1}{a^3}\left(1\right)\)

Áp dụng BĐT Cauchy cho 5 số dương trên, ta có: \(\left(1\right)\ge5\sqrt[5]{\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{3}a^2.\dfrac{1}{a^3}.\dfrac{1}{a^3}}=5\sqrt[5]{\dfrac{1}{27}}=\dfrac{5\sqrt[5]{9}}{3}\left(đpcm\right)\)

Dấu ''='' xảy ra khi và chỉ khi \(\dfrac{1}{3}a^2=\dfrac{1}{a^3}\Leftrightarrow a=\sqrt[5]{3}\)

13 tháng 9 2020

Tao Không biết làm

13 tháng 9 2020

Mài cũng có não mà done