Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có anh ạ, bài này hỏi cả GTLN và GTNN, nhưng hôm trước em gửi câu hỏi trước em chỉ ghi GTNN nên chị Linh Chi đã giải giúp em rồi, giờ em hỏi thêm GTLN nữa.
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
\(A=\frac{1}{1+\frac{b}{a}+\left(\frac{b}{a}\right)^2}=\frac{1}{t^2+t+1}\) (chia cả tử và mẫu cho a2 rồi đặt \(t=\frac{b}{a}\))
Khi đó \(\frac{1}{2}\le t\le2\)
Ta có:
+) \(t\left(t-\frac{1}{2}\right)\ge0\Rightarrow t^2\ge\frac{1}{2}t\Rightarrow A=\frac{1}{t^2+t+1}\le\frac{1}{\frac{3}{2}t+1}\le\frac{1}{\frac{3}{2}.\frac{1}{2}+1}=\frac{4}{7}\)
Đẳng thức xảy ra khi ...
Vậy..
+) \(t\left(t-2\right)\le0\Rightarrow t^2\le2t\Rightarrow A=\frac{1}{t^2+t+1}\ge\frac{1}{3t+1}\ge\frac{1}{3.2+1}=\frac{1}{7}\)
Đẳng thức xảy ra khi ...
Vậy..
P/s: Em ko chắc!
Đúng rồi nha còn một cách nữa là biến đổi tương đương nha mn
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}=\frac{2}{\sqrt{3}}\left(1\right)\)
Từ giả thuyết suy ra \(0\le a,b,c\le2\)
\(\Rightarrow\hept{\begin{cases}ab\ge0\\bc\ge0\\ca\ge0\end{cases}\left(2\right)}\)
\(\Rightarrow\hept{\begin{cases}a^2\le2a\\b^2\le2b\\c^2\le2c\end{cases}\left(3\right)}\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)suy ra:
\(P\ge\frac{2}{\sqrt{3}}+\frac{1}{4}=\frac{8+\sqrt{3}}{4\sqrt{3}}\)
Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)
\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Ai có cách hay?
1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.
2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)
\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)
\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)
tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm
Ta có BĐT cần chứng minh tương đương với:
\(\frac{a}{2}-\frac{a^2}{2a+1}+\frac{b}{2}-\frac{b^2}{2b+1}+\frac{c}{2}-\frac{c^2}{2c+1}\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{\sqrt{a^2+b^2+c^2+6}}\)
Hay: \(\frac{a}{2a+1}+\frac{b}{2b+1}+\frac{c}{2c+1}+\frac{2\left(a^2+b^2+c^2\right)}{\sqrt{a^2+b^2+c^2+6}}\ge3\)
Áp dụng BĐT Bunhiacopxki dạng dạng p.thức ta được:
\(\frac{a}{2a+1}+\frac{b}{2b+1}+\frac{c}{2c+1}\ge\frac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)+3}\)
Khi đó ta cần chứng minh:
\(\frac{9}{2\left(a^2+b^2+c^2\right)+3}+\frac{2\left(a^2+b^2+c^2\right)}{\sqrt{a^2+b^2+c^2+6}}\ge3\)
Đặt: \(t=a^2+b^2+c^2\ge3\) ta có:
\(\frac{9}{2t+3}+\frac{2t}{\sqrt{t+6}}\ge3\Leftrightarrow\frac{9}{2t+3}-1+\frac{2t}{\sqrt{t+6}}-2\ge0\)
\(\Leftrightarrow\frac{2\left(3-t\right)}{2t+3}+\frac{2t-2\sqrt{t+6}}{\sqrt{t+6}}\ge0\)
\(\Leftrightarrow\left(t-3\right)\left[\frac{t+2}{\sqrt{t+6}\left(t+\sqrt{t+6}\right)}-\frac{1}{2t+3}\right]\ge0\)
\(\Leftrightarrow\left(t+2\right)\left(2t+3\right)-\sqrt{t+6}\left(t+\sqrt{t+6}\right)\ge0\)
\(\Leftrightarrow t\left(2t+6-\sqrt{t+6}\right)\ge0\)
Vì: \(t\ge3\) nên BĐT luôn đúng.
BĐT xảy ra \(\Leftrightarrow a=b=c=1\)
Sử dụng Bunhiacopxki:
\(\sqrt{\left(\Sigma_{cyc}\frac{a^2}{\sqrt{a^2+b^2+c^2+6}}\right)\left(\Sigma_{cyc}\frac{a^2\sqrt{a^2+b^2+c^2+6}}{\left(2a+1\right)^2}\right)}\ge\Sigma_{cyc}\frac{a^2}{2a+1}=VT\)
Hay: \(\sqrt{VP.\left(\Sigma_{cyc}\frac{a^2\sqrt{a^2+b^2+c^2+6}}{\left(2a+1\right)^2}\right)}\ge VT\)
Vậy ta chỉ cần chứng minh: \(VP\ge\sqrt{VP.\left(\Sigma_{cyc}\frac{a^2\sqrt{a^2+b^2+c^2+6}}{\left(2a+1\right)^2}\right)}\)
\(\Leftrightarrow VP\ge\Sigma_{cyc}\frac{a^2\sqrt{a^2+b^2+c^2+6}}{\left(2a+1\right)^2}\)
\(\Leftrightarrow\frac{a^2+b^2+c^2}{a^2+b^2+c^2+6}\ge\Sigma_{cyc}\frac{a^2}{\left(2a+1\right)^2}\)
\(P=a^2+a^2+b^2+b^2+ab-2ab-6a+3b+6b+2020\)
\(=\left(a^2+b^2+ab+3b\right)+\left(a^2+b^2-2ab-6a+6b+9\right)-9+2020\)
\(=0+\left(a-b-3\right)^2+2011\ge2011\)
Dấu "=" xảy ra <=> a-b-3=0 <=> a=b+3 thế vào \(a^2+b^2+ab+3b=0\). Ta có:
\(\left(b+3\right)^2+b^2+b\left(b+3\right)+3b=0\)
<=> \(3b^2+12b+9=0\Leftrightarrow\orbr{\begin{cases}b=-1\\b=-3\end{cases}}\)
+) Với b=-1
ta có: a=-1+3=2
Nên a+b=1 >-2 loại
+) Với b=-3
Ta có: a=-3+3=0
Nên a+b=0+-3<-2 tm
Vậy min P=2011 khi và chỉ khi a=0; b=-3
Em cảm ơn c Nguyễn Linh Chi ạ!