Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{-2,6}{x}=-\frac{12}{42}\)
\(\Leftrightarrow\left(-2,6\right).42=-12x\)
\(\Leftrightarrow-12x=-\frac{546}{5}\)
\(\Leftrightarrow x=\frac{91}{10}\)
\(b,\frac{x^2}{6}=\frac{24}{25}\)
\(\Leftrightarrow25x^2=24.6\)
\(\Leftrightarrow25x^2=144\)
\(\Leftrightarrow x^2=\frac{144}{25}\)
\(\Leftrightarrow x=\frac{12}{5}\)
\(a^7-a=a\left(a^6-1\right)=a\left(a^3+1\right)\left(a^3-1\right)\)
e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)
\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)
=> 2 TH
*3x+7=0 *10x-4=0
=>3x=-7 =>10x=4
=>x=-7/3 =>x=4/10=2/5
vậy x=-7/3 hoặc x=2/5
g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)
\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)
=> 2 TH
*-(x+3)=0 *3x-5=0
=>-x=-3 =>3x=5
=x=3 =>x=5/3
h)\(x^2-x^2+x-1=0\)
\(\Rightarrow0+x-1=0\)
\(\Rightarrow x-1=0\)
=>x=0+1
=>x=1
vậy x=1
k, x(x+ 16) - 7x - 42 = 0
=>x^2+16x-7x-42=0
=>x^2+9x-42=0
vì x^2>0
do đó x^2+9x-42>0
nên o có gt nào của x t/m y/cầu đề bài
m)x^2+7x+12=0
=>x^2+3x++4x+12=0
=>x(x+3)+4(x+3)=0
=>(x+4).(x+3)=0
=>2 TH
=> *x+4=0
=>x=-4
vậy x=-4
*x+3=0
=>x=-3
vậy x=-3
n)x^2-7x+12=0
=>x^2-4x-3x+12=0
=>x(x-4)-3(x-4)=0
=>(x-3).(x-4)=0
=>2 TH
*x-3=0=>x=0+3=>x=3
*x-4=0=>x=0+4=>x=4
vậy x=3 hoặc x=4
a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1
b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
Đkxđ : \(x\ne2\)
\(A=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{4}{x-2}\)
\(=x+2+\frac{4}{x-2}\)
Để \(A\in Z\Rightarrow\frac{4}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ_4\)
Mà \(Ư_4=\left\{1,-1,2,-2,4,-4\right\}\)
\(\Rightarrow....\)
Xét 6 trường hợp tìm ra x nha.
Để A là số nguyên thì \(x^2⋮x-2\)(1)
\(x-2⋮x-2\)\(\Rightarrow x^2-4x+4⋮x-2\)(2)
Trừ vế (1) cho (2) thì \(4x-4⋮x-2\)(3)
\(x-2⋮x-2\Rightarrow4x-8⋮x-2\)(4)
Trừ (3) cho (4) thì \(4⋮x-2\)
Vậy x-2 thuộc Ư(4)
.............
đố các thánh làm toán giải đc tìm đc a;b;c tôi lạy lm thánh
Với a, b thuộc Z và không chia hết cho 7
Theo định lí fecmat: \(a^6\equiv1\left(mod7\right)\); \(b^6\equiv1\left(mod7\right)\)(1)
Đặt: \(a^6=u;b^6=v\)
Ta có: \(a^{42}-b^{42}=u^7-v^7=\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)\)
Từ (1) => \(u-v\equiv1-1\equiv0\left(mod7\right)\)=> \(u-v⋮7\)
và \(u^6;u^5v;u^4v^2;u^3v^3;u^2v^4;uv^5;v^6\equiv1\left(mod7\right)\)
\(\Rightarrow u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\equiv1+1+1+1+1+1+1\equiv7\equiv0\left(mod7\right)\)
=> \(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6⋮7\)
=> \(\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)⋮49\)