K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 2 2021

ta có 

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)

\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+ab\right)\left(1+b^2\right)}\ge0\) luôn đúng do ab>= 1

7 tháng 2 2021

Bất đẳng thức cần CM tương đương:

\(\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(2+a^2+b^2\right)\left(1+ab\right)\ge2\left(1+a^2+b^2+a^2b^2\right)\)

\(\Leftrightarrow ab\left(a^2+b^2\right)+2ab+2+a^2+b^2\ge2+2a^2+2b^2+2a^2b^2\)

\(\Leftrightarrow\left[ab\left(a^2+b^2\right)-2a^2b^2\right]-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi: a = b = 1

6 tháng 2 2020

Nếu không áp dụng BĐT thì chuyển vế cũng được nhưng hơi dài :

Mình thử làm thôi nhé :

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}\)

\(=\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}-\frac{2}{\left(1+ab\right)}\)

\(=\frac{2+a^2+b^2-2\left(1+a^2\right)\left(1+b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)

\(=\frac{2+a^2+b^2-2-2b^2-2a^2-2\left(ab\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)

\(=\frac{-\left(a^2+b^2+2a^2b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)

....

23 tháng 3 2020

Giải bất mà không được dùng bất ? Vô lý thế ??

Bài Đạt chưa làm hết,mình làm nốt nha !

23 tháng 3 2017

xét hiệu \(\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\)

quy đồng làm nốt nha                                

26 tháng 9 2018

Bạn cần biết  \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  (nếu bạn chưa biết thì xét hiệu) 

Ta có: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\)

\(\ge\frac{4}{1+a^2+1+b^2}\)

\(=\frac{4}{a^2+b^2+2}\)

\(\ge\frac{4}{2ab+2}=\frac{2}{ab+1}\)

Dấu "=" xảy ra khi \(a=b\)

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

11 tháng 7 2019

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2+2bc+c^2\\b^2=a^2+2ac+c^2\\c^2=a^2+2ab+b^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2-a^2=-2bc\\a^2+c^2-b^2=-2ac\\a^2+b^2-c^2=-2ab\end{matrix}\right.\Rightarrow P=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)

11 tháng 7 2019

a) \(P=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}\) ( Sửa đề )

\(P=\frac{1}{\left(b+c\right)^2-2ab-a^2}+\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(a+c\right)^2-2ac-b^2}\)

Vì a + b + c = 0

Nên a + b = -c

=> ( a + b )2 = (-c)2 = c2

Tương tự: ( b + c )2 = a2 và ( a + c )2 = b2

\(\Rightarrow P=\frac{1}{a^2-2bc-a^2}+\frac{1}{c^2-2ab-c^2}+\frac{1}{b^2-2ac-b^2}\)

\(P=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ac}\)

\(P=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)

10 tháng 5 2019

\(a^2+b^2\ge\frac{1}{2}\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) đúng

Vậy ta có đpcm

10 tháng 5 2019

Không chắc là đúng đâu nhé :D

\(a^2+b^2\ge\frac{1}{2}\)

\(\Leftrightarrow a^2+b^2-\frac{a+b}{2}\ge0\)

\(\Leftrightarrow2a^2+2b^2-a-b\ge0\)

\(\Leftrightarrow2a\left(a+b\right)-\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(2a-1\right)\left(a+b\right)\ge0\)

\(\Leftrightarrow2a-1\ge0\)

\(\Leftrightarrow a\ge\frac{1}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)