Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu không áp dụng BĐT thì chuyển vế cũng được nhưng hơi dài :
Mình thử làm thôi nhé :
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}\)
\(=\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}-\frac{2}{\left(1+ab\right)}\)
\(=\frac{2+a^2+b^2-2\left(1+a^2\right)\left(1+b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)
\(=\frac{2+a^2+b^2-2-2b^2-2a^2-2\left(ab\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)
\(=\frac{-\left(a^2+b^2+2a^2b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)
....
Giải bất mà không được dùng bất ? Vô lý thế ??
Bài Đạt chưa làm hết,mình làm nốt nha !
xét hiệu \(\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\)
quy đồng làm nốt nha
Bạn cần biết \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (nếu bạn chưa biết thì xét hiệu)
Ta có: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\)
\(\ge\frac{4}{1+a^2+1+b^2}\)
\(=\frac{4}{a^2+b^2+2}\)
\(\ge\frac{4}{2ab+2}=\frac{2}{ab+1}\)
Dấu "=" xảy ra khi \(a=b\)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2+2bc+c^2\\b^2=a^2+2ac+c^2\\c^2=a^2+2ab+b^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2-a^2=-2bc\\a^2+c^2-b^2=-2ac\\a^2+b^2-c^2=-2ab\end{matrix}\right.\Rightarrow P=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)
a) \(P=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}\) ( Sửa đề )
\(P=\frac{1}{\left(b+c\right)^2-2ab-a^2}+\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(a+c\right)^2-2ac-b^2}\)
Vì a + b + c = 0
Nên a + b = -c
=> ( a + b )2 = (-c)2 = c2
Tương tự: ( b + c )2 = a2 và ( a + c )2 = b2
\(\Rightarrow P=\frac{1}{a^2-2bc-a^2}+\frac{1}{c^2-2ab-c^2}+\frac{1}{b^2-2ac-b^2}\)
\(P=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ac}\)
\(P=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)
\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) đúng
Vậy ta có đpcm
Không chắc là đúng đâu nhé :D
\(a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow a^2+b^2-\frac{a+b}{2}\ge0\)
\(\Leftrightarrow2a^2+2b^2-a-b\ge0\)
\(\Leftrightarrow2a\left(a+b\right)-\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(2a-1\right)\left(a+b\right)\ge0\)
\(\Leftrightarrow2a-1\ge0\)
\(\Leftrightarrow a\ge\frac{1}{2}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
ta có
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+ab\right)\left(1+b^2\right)}\ge0\) luôn đúng do ab>= 1
Bất đẳng thức cần CM tương đương:
\(\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(2+a^2+b^2\right)\left(1+ab\right)\ge2\left(1+a^2+b^2+a^2b^2\right)\)
\(\Leftrightarrow ab\left(a^2+b^2\right)+2ab+2+a^2+b^2\ge2+2a^2+2b^2+2a^2b^2\)
\(\Leftrightarrow\left[ab\left(a^2+b^2\right)-2a^2b^2\right]-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi: a = b = 1