Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(N=\frac{a}{b+1}+\frac{b}{a+1}=\frac{a^2}{ab+a}+\frac{b^2}{ab+b}\)
\(\ge\frac{\left(a+b\right)^2}{a+b+2ab}\ge\frac{1}{1+\frac{\left(a+b\right)^2}{2}}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
Lại có: \(\frac{a}{b+1}=\frac{a}{2-a}\)
Do \(a;b\ge0\); a+b=1
\(\Rightarrow0\le a\le1\)
\(\Rightarrow2-a\ge1\)
\(\Rightarrow\frac{a}{2-a}\le a\left(a\ge0\right)\)
Tương tự suy ra \(N\le a+b=1\)
Dấu = xảy ra khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)
Vậy \(N_{Min}=\frac{2}{3}\Leftrightarrow a=b=\frac{1}{2}\)
\(N_{Max}=1\Leftrightarrow\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
Ta có:\(a+b=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow2\left(a+b\right)\ge\left(a+b\right)^2\Rightarrow2\ge a+b\)
\(N=1-\frac{1}{a+1}+1-\frac{1}{b+1}=2-\frac{1}{a+1}-\frac{1}{b+1}\le2-\frac{4}{a+1+b+1}\)
\(=2-\frac{4}{a+b+2}\le2-\frac{4}{2+2}=1\)
Nên GTLN của N là 1 đạt được khi \(a=b\Rightarrow2a=2a^2\Rightarrow2a\left(a-1\right)=0\Rightarrow a=1\)
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b)
\(\Rightarrow2\ge a+b\)
Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)
\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\)
Dấu "=" xảy ra khi: a=b=1
Ta có: \(a\sqrt{b+1}=\frac{a\sqrt{\left(b+1\right)2}}{\sqrt{2}}\le a\frac{b+1+2}{2\sqrt{2}}=\frac{ab+3a}{2\sqrt{2}}\)
Tương tự: \(b\sqrt{a+1}\le\frac{ab+3b}{2\sqrt{2}}\)
\(\Rightarrow M\le\frac{3\left(a+b\right)+2ab}{2\sqrt{2}}\le\frac{6+\frac{\left(a+b\right)^2}{2}}{2\sqrt{2}}=\frac{8}{2\sqrt{2}}=2\sqrt{2}\)
Dấu = khi a=b=1
Ta có: \(a+b=2\Rightarrow b=2-a\)
\(\Rightarrow a\sqrt{b+1}=a\sqrt{3-a}\)
Lại có: \(\hept{\begin{cases}a;b>0\\a+b=2\end{cases}}\Rightarrow0\le a;b\le2\)
Mặt khác: \(a\le2\Rightarrow3-a\ge1\)
\(\Rightarrow\sqrt{3-a}\ge1\)
\(\Rightarrow a\sqrt{3-a}\ge a\) Do \(a\ge0\)
Tương tự suy ra \(M\ge a+b=2\)
Dấu = khi \(\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)
Vậy \(M_{Max}=2\sqrt{2}\Leftrightarrow a=b=1\)
\(M_{Min}=2\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)
Nè Phan Linh Nhi, mk ko hỉu cái chỗ: a+b\(\le2\). Bn có thể giải thích chi tiết cho mk đc ko??
∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2
Do đó:
S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1
Có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\Rightarrow2\ge a+b\)
\(S=\frac{a}{a+1}+\frac{b}{b+1}=\frac{a+1}{a+1}+\frac{b+1}{b+1}-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)
AD BĐT: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y\in Z^+\right)\)
\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\ge\frac{4}{4}=1\) ( vì \(2\ge a+b\) )
\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
Vậy \(S_{max}=1\Leftrightarrow a=b=1\)