K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)-5abc\\ =\left(ab+ac+b^2+bc\right)\left(c+a\right)-5abc\\ =ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ac\left(c+a\right)+abc-abc-5abc\\ =ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)-6abc\\ =\left(a+b+c\right)\left(ab+bc+ca\right)-6abc\)

Vì \(a+b+c⋮12\) nên \(a+b+c\) chẵn

Do đó tồn tại ít nhất 1 số trong 3 số a,b,c chẵn

\(\Rightarrow6abc⋮6\cdot2=12\)

Mà \(\left(a+b+c\right)\left(ab+bc+ca\right)⋮12\left(a+b+c⋮12\right)\)

Vậy ta được đpcm

NV
8 tháng 1 2022

1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó

2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3. 

Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)

Ta có 2 TH sau:

- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)

\(\Rightarrow\) Tích đã cho chia hết 12

- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)

3. Với \(n=1\) thỏa mãn

Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)

\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)

Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)

Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)

TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)

\(\Rightarrow n=10m+4\)

TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)

Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5

17 tháng 10 2021

Ta có \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Để tổng trên chia hết cho 81 thì \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)

Mà \(a+b+c=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Bài toán trở thành: Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\) - Hoc24

 

31 tháng 7 2019

Sửa đề: Chứng minh \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

Ta có: \(x+1=\frac{a+b}{a-b}+1=\frac{2a}{a+b}\) . Tương tự với hai đẳng thức còn lại và nhân theo vế, được:

\(VT=\left(x+1\right)\left(y+1\right)\left(z+1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) (\(a\ne b\ne c\)) (1)

Lại có \(x-1=\frac{a+b}{a-b}-1=\frac{2b}{a-b}\).Tương với hai đẳng thức kia rồi nhân theo vế ta được:

\(VP=\left(x-1\right)\left(y-1\right)\left(z-1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) (2)

Từ (1) và (2) suy ra đpcm.

Sai hay đúng thì tùy:v

1 tháng 8 2019

câu này hôm đấy giáo viên cho sai đề hiha

16 tháng 4 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wow, chắc xu học lớp 9

cố quá = quá cố

31 tháng 7 2019

bất đẳng thức schur bậc 3,dễ mà,c/m cũng dễ nữa,tự tra đi.gợi ý này:giả sử a>b>c nhé

1 tháng 8 2019

Thử cách của em xem:)

Do vai trò bình đẳng giữa a, b, c ta có thể giả sử \(a\ge b\ge c\).

BĐT \(\Leftrightarrow\left(\frac{b+c-a}{2}\right)\left(b-c\right)^2+\left(\frac{c+a-b}{2}\right)\left(c-a\right)^2+\left(\frac{a+b-c}{2}\right)\left(a-b\right)^2\ge0\)

Đặt \(\frac{b+c-a}{2}=S_a;\frac{c+a-b}{2}=S_b;\frac{a+b-c}{2}=S_c\) thì:

\(S_b;S_c\ge0\Rightarrow S_b+S_c\ge0\left(1\right)\).  và BĐT trở thành \(\Leftrightarrow S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge0\)

\(\Leftrightarrow S_a\left(b-c\right)^2+S_b\left(b-c+a-b\right)^2+S_c\left(a-b\right)^2\ge0\)

\(\Leftrightarrow\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_c+S_b\right)\left(a-b\right)^2+2S_b\left(b-c\right)\left(a-b\right)\ge0\)

Do \(a\ge b\ge c\)và Sb > 0 nên \(2S_b\left(b-c\right)\left(a-b\right)\ge0\). Theo (1) thì Sb + Sc > 0. Kết hợp với (*), ta cần chứng minh: 

\(\left(S_a+S_b\right)\left(b-c\right)^2\ge0\Leftrightarrow S_a+S_b\ge0\).

\(\Leftrightarrow\frac{b+c-a}{2}+\frac{c+a-b}{2}\ge0\Leftrightarrow c\ge0\) (luôn đúng)

Đẳng thức xảy ra khi \(a=b=c\text{hoặc }a=b;c=0\text{ và các hoán vị của nó.}\)

Sai thì em chịu nha!

NV
24 tháng 5 2021

Bài này có bạn giải rồi:

Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24