\(a+b+c=x+y+z=\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

Chứng minh rằng: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Câu hỏi của Momozono Nanami - Toán lớp 8 - Học toán với OnlineMath

1 tháng 9 2017

ta có x+y+z=0 =>x^2=(y+z)^2 
y^2=(x+z)^2 
z^2=(x+y)^2 
do đó ax^2+by^2+cz^2 
=a(y+z)^2+b(x+z)^2+c(x+y)^2 
=a(y^2+2yz+z^2)+b(x^2+2xz+z^2) 
+c(x^2+2xy+y^2) 
=x^2(b+c)+y^2(a+c)+z^2(a+b) 
+2(ayz+bxz+cxy) (1) 
thay b+c=-a ,a+c=-b , a+b=-c do a+b+c=0 
và ayz+bxz+cxy=0 do a/x+b/y+c/z=0 vào (1) ta được 
ax^2+by^2+cz^2 = -(ax^2+by^2+cz^2) 
=> ax^2+by^2+cz^2=0

3 tháng 3 2020

Violympic toán 8

3 tháng 3 2020

Đề thiếu???

11 tháng 12 2017

xin lỗi bạn 

đáp án mình là 495

Ta có : \(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(z+x\right)^2\\z=\left(x+y\right)^2\end{cases}}\)

\(\Rightarrow ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

                                       \(=ay^2+az^2+bz^2+bx^2+cx^2+cy^2+2\left(ayz+bzx+cxy\right)\) 

                                       \(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\left(1\right)\)

Từ \(a+b+c=0\)                    \(\Rightarrow\hept{\begin{cases}b+c=-a\\c+a=-b\\a+b=-c\end{cases}}\) 

Thay vào \(\left(1\right)\), ta được :

\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2+2\left(ayz+bzx+cxy\right)\)

Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)\(\Rightarrow ayz+bzx+cxy=0\)

\(\Rightarrow ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)

\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)

Từ \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)

Từ \(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}}\)

Thay vào \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow\frac{-\left(b+c\right)}{-\left(y+z\right)}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Rightarrow2byz+2cyz+bz^2+cy^2=0\)

\(\Rightarrow-\left(b+c\right).-\left(y+z\right)^2+by^2+cz^2=0\)

\(\Rightarrow\text{ax}^2+by^2+cz^2=0\)(dpcm)

Suy ngược nha k chắc

23 tháng 5 2019

từ x + y + z = 0 suy ra x2 = ( y + z )2 , y2 = ( x + z )2 , z2 = ( x + y )2 

do đó :

ax2 + by2 + cz2 = a ( y + z )2 + b ( x + z )2 + c ( x + y )2

= a ( y2 + 2yz + z2 ) + b ( x2 + 2xz + z2 ) + c ( x2 + 2xy + y2 )

= x2 ( b + c ) + y2 ( a + c ) + z2 ( a + b ) + 2 ( ayz + bxz + cxy )                   ( 1 )

thay b + c = -a ; a + c = -b ; a + b = -c do a + b +c = 0 và thay ayz + bxz + cxy = 0 do \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)vào ( 1 )

Ta được : ax2 + by2 + cz2 = -ax2 - by2 - cz2 

nên 2 ( ax2 + by2 + cz2 ) = 0 \(\Rightarrow\)ax2 + by2 + cz2 = 0

19 tháng 5 2016

nhân lên rồi áp dụng BĐT bunhiacopxki

19 tháng 5 2016

\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2\right)+c^2\)

Khai triển và rút gọn ta được: 

\(2abxy+2acxz+2bcyz=a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)

Gom các hạng tử lai thành hằng đẳng thức: 

\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(cy-bz\right)^2=0\)

Mà bình phương của các số thì \(\ge\)0 nó chỉ bằng 0 khi và chỉ khi từng hạng tử =0 

nên: \(\hept{\begin{cases}ay-bx=0\\az-cx=0\\cy-bz=0\end{cases}\Rightarrow\hept{\begin{cases}ay=bx\rightarrow\frac{a}{x}=\frac{b}{y}\\az=cx\rightarrow\frac{a}{x}=\frac{c}{z}\\cy=bz\rightarrow\frac{c}{z}=\frac{b}{y}\end{cases}}}\) 

=>Đpcm 

10 tháng 10 2017

Nâng cao và phát triển toán 8 tập 1 bài 150*

4 tháng 10 2017

Ta có (a+b+c)*(x^2+y^2+z^2)=0

vì a+b+c=0 suy ra (a+b+c)*(x^2+y^2+z^2)=0

suy ra ax^2+by^2+cz^2=0

21 tháng 11 2017

Ta có (a+b+c)*(x^2+y^2+z^2)=0

vì a+b+c=0 suy ra (a+b+c)*(x^2+y^2+z^2)=0

suy ra ax^2+by^2+cz^2=0

1 tháng 6 2018

từ x + y + z = 0 suy ra x2 = ( y + z )2 , y2 = ( x + z )2 , z2 = ( x + y )2

Do đó : ax2 + by2 + cz2 = a ( y + z )2 + b ( x + z )2 + c ( x + y )2

= a ( y2 + 2yz + z2 ) + b ( x2 + 2xz + z2 ) + c ( x2 + 2xy + y2 )

= x2 ( b + c ) + y2 ( a + c ) + z2 ( a + b ) + 2 ( ayz + bxz + cxy )                          ( 1 )

Thay b + c = -a, a + c = -b , a + b = -c do a + b + c = 0 

Thay ayz + bxz + cxy = 0 do \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)   vào ( 1 ), ta được :

ax2 + by2 + cz2 = -ax2 - by2 - cz2

nên 2ax2 + 2by2 + 2cz2 = 0 \(\Rightarrow\)ax2 + by2 + cz2 = 0