K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c

Dễ thế mà chẳng ai làm được..

22 tháng 2 2017

Áp dụng TCDTSBN ta có :

\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)-\left(a-c\right)}{x+y-z}=\frac{0}{x+y-z}=0\)

\(\Rightarrow\frac{a-b}{x}=0\Rightarrow a-b=0\Rightarrow a=b\) (1)

\(\Rightarrow\frac{b-c}{y}=0\Rightarrow b-c=0\Rightarrow b=c\) (2)

\(\Rightarrow\frac{a-c}{z}=0\Rightarrow a-c=0\Rightarrow a=c\) (3)

Từ (1);(2) và (3) \(\Rightarrow a=b=c\) (đpcm)

23 tháng 7 2017

Sửa đề: Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) . CMR: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Giải:

\(\dfrac{b.z-x.y}{a}=\dfrac{c.x-a.z}{b}=\dfrac{a.y-b.x}{c}\)

\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bz\right)}{c^2}\)

\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

\(\Rightarrow\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(\Rightarrow\dfrac{0}{a^2+b^2+c^2}\)

\(=0\)

\(\dfrac{bz-cy}{a}=0\)

\(\Rightarrow bz-cy=0\)

\(\Rightarrow\dfrac{z}{c}=\dfrac{y}{b}\left(1\right)\)

\(\dfrac{cx-az}{b}=0\)

\(\Rightarrow cx-az=0\)

\(\Rightarrow cx=az\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

17 tháng 2 2018

tra mạng đi hỏi nhiều haha!!!

:V chưởng nhờ anh HUY chỉ cho hihi

nó học giỏi toán lắm đó hehe!!!!

nvcl

17 tháng 2 2018

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)+\left(a-c\right)}{x+y+z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow\frac{a-c}{z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow x+y+z=2z\)
Do x+y+z lẻ và 2z là số chẵn nên không tồn tại x,y,z=> Đề sai :))