\(\frac{a^2}{a^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

http://diendantoanhoc.net/topic/152549-t%C3%ADnh-fraca2a2-b2-c2-fracb2b2-c2-a2fracc2c2-b2-a2/

19 tháng 12 2016

Ta có: \(a+b+c=0\)

\(\Rightarrow1\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=-2ab+c^2\\b^2+c^2=-2bc+a^2\\c^2+a^2=-2ac+b^2\end{cases}}\)

\(\Rightarrow1A=\frac{a^2}{a^2+2bc-a^2}+\frac{b^2}{b^2+2ac-b^2}+\frac{c^2}{c^2+2ab-c^2}\)

\(=\frac{a^3+b^3+c^3}{2abc}=\frac{a^3+b^3+c^3-3abc+3abc}{2abc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\)

\(=\frac{3}{2}\)

8 tháng 12 2018

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

                   đpcm

8 tháng 12 2018

bỏ chữ đpcm đi bạn nhé.

Mình nhầm~

30 tháng 6 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)

\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)

\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)

     Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)

 \(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)

Sau đó bạn thực hiện tiếp nhé.

2 tháng 8 2021

Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)

Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)

Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)

Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)

9 tháng 2 2019

\(a^2+b^2+c^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow ab+ac+bc=0\)

\(\Leftrightarrow\hept{\begin{cases}ab=-ac-bc\\ac=-ab-bc\\bc=-ab-ac\end{cases}}\)

Ta có : \(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

CMTT ta có : \(\hept{\begin{cases}b^2+2ac=\left(b-a\right)\left(b-c\right)\\c^2+2ab=\left(c-a\right)\left(c-b\right)\end{cases}}\)

Thay vào A ta được :

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(A=\frac{b-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-a+c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=0\)

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

26 tháng 6 2019

A=3

B=3

5 tháng 7 2016

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\)

=>\(\frac{1}{a^2}=-\left(\frac{1}{ab}+\frac{1}{ca}\right)\)

cm tương tự: \(\frac{1}{b^2}=-\left(\frac{1}{ab}+\frac{1}{bc}\right)\)

                     \(\frac{1}{c^2}=-\left(\frac{1}{ca}+\frac{1}{bc}\right)\)

=> \(N=-\left[bc\left(\frac{1}{ab}+\frac{1}{ca}\right)+ca\left(\frac{1}{ab}+\frac{1}{bc}\right)+ab\left(\frac{1}{ca}+\frac{1}{bc}\right)\right]\)

          \(=-\left[\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right]\)

            \(=-\left[\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right]\)    (1)

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=0\)

=>\(1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}=0\)

=>\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-3\)   (2)

Từ (1) và (2) =>N=3