Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)
\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)
\(\Leftrightarrow ab+bc+ca\le3\)
\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)
Đến đây dễ rồi để YẾN tự làm
Bạn tham khảo:
Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến
Từ giả thiết, ta có
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)
=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)
Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)
=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)
=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)
Vậy M=4
^_^
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+b+c)(1+b+c)\geq (a+b+c)^2\Rightarrow \sqrt{a^2+b+c}\geq \frac{a+b+c}{\sqrt{1+b+c}}\)
\(\Rightarrow \frac{a}{\sqrt{a^2+b+c}}=\frac{a\sqrt{1+b+c}}{a+b+c}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\leq \frac{a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}}{a+b+c}\)
Tiếp tục sd BĐT Bunhiacopxky:
\((a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b})^2\leq (a+b+c)(a+ab+ac+b+ba+bc+c+ca+cb)\)
\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a+b+c+2ab+2bc+2ac)}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\((a+b+c)^2\leq 3(a^2+b^2+c^2)=9\Rightarrow a+b+c\leq 3\Rightarrow a+b+c\leq a^2+b^2+c^2\)
Do đó:
\(a\sqrt{1+b+c}+b\sqrt{1+a+c}+c\sqrt{1+a+b}\leq \sqrt{(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac)}\)
\(=\sqrt{(a+b+c)^3}\)
\(\Rightarrow \text{VT}\leq \frac{\sqrt{(a+b+c)^3}}{a+b+c}=\sqrt{a+b+c}\leq \sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Câu trả lời hay nhất: Bài này áp dụng BĐT Cauchy (Cô-si) cho 2 số.
Ta có: a^2/b + b >= 2.căn[(a^2/b).b] = 2.căn(a^2) = 2|a| >= 2a
Tương tự, b^2/c + c >= 2|b| >= 2b
................c^2/a + a >= 2|c| >= 2c
Cộng vế với vế, ta được:
a^2/b + b^2/c + c^2/a + a + b + c >= 2a + 2b + 2c
<=> a^2/b + b^2/c + c^2/a >= a + b + c (điều phải chứng minh)
k cho mk nha
doc sai de a