\(\ne0\)và \(\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=a^5+b^5+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

Ta có: \(c=-a-b\), tính được các đại lượng: 

\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=-3ab\left(a+b\right)\)

\(a^5+b^5+c^5=a^5+b^5-\left(a+b\right)^5=-5ab\left(a^3+b^3\right)-10a^2b^2\left(a+b\right)\)

\(=-5ab\left(a+b\right)\left(a^2+b^2-ab\right)-10a^2b^2\left(a+b\right)\)

2 biểu thức trên bằng nhau nên:

\(5ab\left(a+b\right)\left[a^2+b^2-ab+2ab\right]=3ab\left(a+b\right)\)

\(\Leftrightarrow\orbr{\begin{cases}a+b=0\text{ (1)}\\5\left(a^2+b^2+ab\right)=3ab\text{ (2)}\end{cases}}\text{ }\left(do\text{ }ab\ne0\right)\)

\(\left(2\right)\Leftrightarrow5a^2+5b^2-2ab=0\Leftrightarrow4a^2+4b^2+\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b=0\) --> loại

Vậy \(a+b=0\)

\(\Rightarrow c=-a-b=0\)--> loại

Vậy ko tồn tại a, b, c thỏa giả thiết bài toán

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

11 tháng 7 2019

Ta có:

\(\hept{\begin{cases}|x+1|+|y+1|=5\left(1\right)\\|x+1|=4y-4\left(2\right)\end{cases}}\)

Thay (2) vào (1):

\(4y-4+|y-1|=5\left(3\right)\)

+Nếu \(y\ge-1\Rightarrow4y-4+y+1=5\Rightarrow5y=8\Rightarrow y=\frac{8}{5}\left(TM\right)\)

Thay y = 8/5 vào (2) ta có: 

\(|x+1|=4.\frac{8}{5}-4\)

\(\Leftrightarrow|x+1|=\frac{12}{5}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{12}{5}\\x+1=\frac{-12}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{5}\\x=-\frac{17}{5}\end{cases}}\)

+Nếu \(y\le-1\Rightarrow4y-4-y-1=5\Rightarrow3y=10\Rightarrow y=\frac{10}{3}\left(L\right)\)

\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)

\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)

Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1 

=> hệ pt vô nghiệm 

\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~