Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b+c-a}{a}+\frac{2a}{a}=\frac{a+c-b}{b}+\frac{2b}{b}=\frac{a+b-c}{c}+\frac{2c}{c}\)
\(\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
=> a=b=c
A=(1+1)(1+1)(1+1) = 2.2.2 =8
\(A=\left(\frac{a+b}{b}\right).\left(\frac{b+c}{c}\right).\left(\frac{a+c}{a}\right)\)
Vì \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
\(\Rightarrow A=\frac{-c}{b}.\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)
\(\Rightarrow A=-1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
+) Nếu \(a+b+c=0\) :
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(b+c=-a\)
\(\Rightarrow\)\(a+c=-b\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
+) Nếu \(a+b+c\ne0\) :
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(a=b=c\)
Suy ra :
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\) hoặc \(P=8\)
Chúc bạn học tốt ~
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b+c}{a+b+c}=1\)
Vậy thì \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Thay vào biểu thức M ta có:
\(M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8.\)
Vậy M = 8.
Áp dụng t/c dãy tỉ số = nhau
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)
Tương tự \(b+c=2a;;c+a=2b\)
\(\Rightarrow D=\left(\frac{a+b}{a}\right)\left(\frac{b+c}{b}\right)\left(\frac{c+a}{c}\right)=\left(\frac{2c}{a}\right)\left(\frac{2a}{b}\right)\left(\frac{2b}{c}\right)=8\)
Theo đề ta có :
\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2\)
\(\Rightarrow\frac{a+b-c+2c}{c}=\frac{b+c-a+2a}{a}=\frac{a+c-b+2b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow\left(a+b+c\right).\frac{1}{c}=\left(a+b+c\right)\frac{1}{c}=\left(a+b+c\right)\frac{1}{b}\)
(vì \(a\ne b\ne c\ne0\) \(\frac{\Rightarrow1}{a}\ne\frac{1}{b}\ne\frac{1}{c}\ne0\) \(\Rightarrow a+b+c=0\))
* a+b+c=0
=>a+b=-c ; b+c=-a ; a+c =-b
\(D=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)
\(=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c.-a.-b}{a.b.c}=\frac{-1.\left(a.b.c\right)}{a.b.c}=-1\)
Vậy : D=-1