Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c\left(1\right)\)
\(\Leftrightarrow\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^4+b^4+c^4}{abc}\ge a+b+c\)
\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta xét BĐT phụ: \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
Cộng các BĐT phụ vừa chứng minh:
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Áp dụng vào bài, ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng lần nữa:
\(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+a^2bc=abc\left(a+b+c\right)\)
Vậy ta suy ra được điều phải chứng minh
a) Đặt vế trái BĐT là P
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)8.8}}=\dfrac{3a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+b}{8}\ge\dfrac{3c}{4}\)
Cộng vế theo vế các BĐT vừa chứng minh
\(P+\dfrac{6+2a+2b+2c}{8}\ge\dfrac{3a+3b+3c}{4}\)
\(P\ge\dfrac{3a+3b+3c}{4}-\dfrac{2\left(3+a+b+c\right)}{8}=\dfrac{3a+3b+3c-a-b-c-3}{4}=\dfrac{2\left(a+b+c\right)-3}{4}\)
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow P\ge\dfrac{2.3-3}{4}=\dfrac{3}{4}\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)
\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế
\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
Từ \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2017\)
\(\Leftrightarrow7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2017\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le2017\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(T=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
\(=\dfrac{1}{\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2c^2+a^2\right)}}\)
\(\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2^2}{2a}+\dfrac{1^2}{b}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2b}+\dfrac{1^2}{c}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2c}+\dfrac{1^2}{a}\right)\)
\(\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\)\(=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\le\sqrt{\left(\dfrac{1}{81}+\dfrac{1}{81}+\dfrac{1}{81}\right)\left(\dfrac{9}{a^2}+\dfrac{9}{b^2}+\dfrac{9}{c^2}\right)}\)
\(\le\sqrt{\dfrac{1}{81}\cdot3\cdot9\cdot2017}=\sqrt{\dfrac{2017}{3}}\)
Vậy \(T_{Max}=\sqrt{\dfrac{2017}{3}}\) khi \(a=b=c=\sqrt{\dfrac{3}{2017}}\)
So kimochiii~
BĐT cơ bản
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\dfrac{ab}{c+1}=ab\dfrac{1}{c+a+b+c}=ab\dfrac{1}{\left(c+a\right)+\left(b+c\right)}\le\dfrac{ab}{4}\left[\dfrac{1}{c+a}+\dfrac{1}{b+c}\right]\)
\(\dfrac{bc}{a+1}=bc\dfrac{1}{a+a+b+c}=bc\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{bc}{4}\left[\dfrac{1}{a+b}+\dfrac{1}{a+c}\right]\)
\(\dfrac{ac}{b+1}=ac\dfrac{1}{b+a+b+c}=ac\dfrac{1}{\left(b+a\right)+\left(b+c\right)}\le\dfrac{ac}{4}\left[\dfrac{1}{b+a}+\dfrac{1}{b+c}\right]\)
Công lại:
\(A\le\left[\dfrac{ab+bc}{4\left(c+a\right)}+\dfrac{ab+ac}{4\left(b+c\right)}+\dfrac{bc+ac}{4\left(b+a\right)}\right]\)
\(A\le\left[\dfrac{b\left(a+c\right)}{4\left(c+a\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}+\dfrac{c\left(b+a\right)}{4\left(b+a\right)}\right]\)
\(A\le\left[\dfrac{b}{4}+\dfrac{a}{4}+\dfrac{c}{4}\right]\)
\(A\le\dfrac{b+a+c}{4}=\dfrac{1}{4}\)
Đẳng thức khi \(a=b=c=\dfrac{1}{3}\)
Xong rồi đó mỏi cái lưng
Áp dụng BĐT Cauchy cho từng cặp số:
\(\dfrac{ab}{c+1}=\dfrac{bc}{a+1}\); \(\dfrac{bc}{a+1}=\dfrac{ca}{b+1}\) ; \(\dfrac{ac}{b+1}=\dfrac{ab}{c+1}\)
Kết quả cuối cùng là \(VT\ge a+b+c=1\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)
Không chắc :v
điện thoại cùi nên chụp hơi mờ, đề này còn thiếu a,,bc>0