Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức tam giác:
\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\Rightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{cases}}\)
Cộng các bất đẳng thức lại với nhau có điều cần CM
Bài 1:
Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\)
Ta thấy \(\left\{{}\begin{matrix}a^2\ge0\\b^2\ge0\\c^2\ge0\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge0\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Leftrightarrow ab+bc+ca\le0\left(đpcm\right)\)
Vậy...
Với \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ac+bc+ac\right)\)
Vì \(a^2\ge0;b^2\ge0;c^2\ge0\)(với mọi a,b,c\(\in\)R)
\(\Rightarrow\)\(a^2+b^2+c^2\ge0\) (đẳng thức xảy ra khi a=b=c=0)
\(\Rightarrow-2\left(ab+bc+ac\right)\ge0\)
\(\Rightarrow ab+bc+ac\le0\)(đpcm)
\(B=\left(x-5+3y\right)^2+50-6xy\)
\(=x^2+25+9y^2-10x-30y+6xy+50-6xy\)
\(=x^2+9y^2-10x-30y+75\)
\(=x^2-10x+25+9y^2-30y+25+25\)
\(=\left(x-5\right)^2+\left(3y-5\right)^2+25>0\forall x;y\)
Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)
\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)
và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)
Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)
Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3
\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)
\(\Rightarrow a+b^2+c^3\le a+b+c\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
=> đpcm
\(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-a-c\\c=-a-b\end{cases}}\)
\(ab+bc+ac=\left(-b-c\right).b+\left(-a-c\right).c+\left(-a-b\right).a\)
\(=-\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)
\(\Rightarrow2.\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow ab+bc+ac\le0\)(đpcm)
Boul đẹp trai_tán gái đổ 100%:mik có cách khác nè:3
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow2\left(ab+bc+ca\right)\le0\Rightarrowđpcm\)