K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

\(ac=bb=>\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\)

áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}=\frac{a+2012b}{b+2012c}\)

\(=>\left(\frac{a}{b}\right)^2=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

vì \(\frac{a}{b}=\frac{b}{c}=>\left(\frac{a}{b}\right)^2=\frac{a.b}{b.c}=\frac{a}{c}\)

\(=>\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\left(dpcm\right)\)

31 tháng 10 2015

sai de !!!!!!!!!!!!!!!!!

24 tháng 1 2018

https://olm.vn/hoi-dap/question/61610.html

..............................

có các câu hỏi tương tự, khá giống đó bạn ak

3 tháng 8 2017

Sửa lại đề \(CM\)\(\frac{a}{c}=\frac{\left(a+20112b\right)^2}{\left(b+2012c\right)^2}\)

Có \(a,b,c\in R;a,b,c\ne0\)và \(b^2=ac\)

Ta có \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Lại có \(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\Rightarrow\frac{a}{b}=\frac{a+2012b}{b+2012c}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\Rightarrow\frac{a^2}{ac}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

Hay \(\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

3 tháng 8 2017

\(\frac{\left(a+2012.b\right)^2}{\left(b+2012.c\right)^2}=\frac{a^2+2.2012.a.b+2012^2.b^2}{b^2+2.2012.b.c+2012^2.c^2}=\frac{a^2+2.2012.a.b+2012^2.a.c}{a.c+2.2012.b.c+2012^2.c^2}=\)

\(=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)

Xem lại đề bài

25 tháng 9 2017

Bài 1:

Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)

Vậy...

Bài 2:

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)

\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)

\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)

\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)

Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)

25 tháng 9 2017

bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn

\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{2018b}{2018c}=t\)

tính chất dãy tỉ số bằng nhau: \(\dfrac{a}{b}=\dfrac{2018b}{2018c}=\dfrac{a+2018b}{b+2018c}\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a}{c}=t^2\\\left(\dfrac{a+2018b}{b+2018c}\right)^2=t^2\end{matrix}\right.\Leftrightarrowđpcm\)