\(\in R^+\) thõa mãn \(a+b+c=1\). CMR :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

Ta có:

\(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}\)

\(\Leftrightarrow \frac{a-bc}{a(a+b+c)+bc}+\frac{b-ac}{b(a+b+c)+ca}+\frac{c-ab}{c(a+b+c)+ab}\leq \frac{3}{2}\)

\(\Leftrightarrow \frac{a-bc}{(a+b)(a+c)}+\frac{b-ac}{(b+a)(b+c)}+\frac{c-ab}{(c+a)(c+b)}\leq \frac{3}{2}\)

\(\Leftrightarrow \frac{(a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)}{(a+b)(b+c)(c+a)}\leq \frac{3}{2}\)

\(\Leftrightarrow (a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)\leq \frac{3}{2}(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 2(ab+bc+ac)-[ab(a+b)+bc(b+c)+ac(a+c)]\leq \frac{3}{2}(1-a)(1-b)(1-c)\)

\(\Leftrightarrow 4(ab+bc+ac)-2[ab(a+b)+bc(b+c)+ac(c+a)]\leq 3(ab+bc+ac-abc)\)

\(\Leftrightarrow ab+bc+ac+3abc\leq 2[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(\Leftrightarrow ab+bc+ac+9abc\leq 2[ab(a+b+c)+bc(a+b+c)+ac(a+b+c)]\)

\(\Leftrightarrow ab+bc+ac+9abc\leq 2(a+b+c)(ab+bc+ac)\)

\(\Leftrightarrow ab+bc+ac+9abc\leq 2(ab+bc+ac)\)

\(\Leftrightarrow 9abc\leq ab+bc+ac\)

\(\Leftrightarrow 9abc\leq (a+b+c)(ab+bc+ac)\)

BĐT trên luôn đúng do theo BĐT AM-GM ta có:

\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

Vậy ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)


28 tháng 5 2018

Đặt \(\left(a,b,c\right)\rightarrow\left(\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}\right)\)

BĐT cần c/m tương đương với

\(\sum\dfrac{yz}{xy+xz+2yz}\le\dfrac{3}{4}\)

\(\Leftrightarrow\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{3}{2}\)

Ta có \(\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{\left(2\sum xy\right)^2}{\sum\left(xy+xz+2yz\right)\left(xy+xz\right)}=\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\)

Như vậy ta cần c/m \(\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\ge\dfrac{3}{2}\)

\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\sum x^2y^2+18\sum x^2yz\)

\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\left(\sum xy\right)^2+6\sum x^2yz\)

\(\Leftrightarrow\left(\sum xy\right)^2\ge3\sum x^2yz\) (luôn đúng)

28 tháng 5 2018

Ta có:

\(\dfrac{1}{ab+a+2}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{1+c}+\dfrac{1}{a+1}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{3}{4}\)

27 tháng 5 2018

Ta có

\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)

Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)

\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)

\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)

Tự làm tiếp

22 tháng 3 2021

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

22 tháng 3 2021

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

17 tháng 4 2017

Theo đề bài thì: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\sum\dfrac{a}{a^2+bc}\le\sum\dfrac{a}{2a\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{bc}}\)

\(\le\dfrac{1}{2}\sum\left(\dfrac{1}{2a}+\dfrac{1}{2b}\right)=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)

18 tháng 4 2017

Mặc dù chả hiểu gì cả nhưng cảm ơn c nhé!vui

C giải bằng phương pháp của lớp 9 được ko?

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0