\(a,b,c\inℤ\). Chứng minh rằng: Nếu a < b và b < c thì a < c. (Tính chất bă...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Có a<b (1) và b<c (2)

Cộng vế theo vế của (1) và (2) ta được : a+b<b+c

=> a<c ( trừ 2 vế với b)

9 tháng 11 2017

Nếu a<b và b<c

=> a + b < b + c

Hay a < c ( ĐPCM )

1 tháng 8 2015

Vì x<y=>a/m<b/m=>a<b

Ta có: a/m=2a/2m;          b/m=2b/2m

2a<a+b<2b

=> 2a/2m<a+b/2m<2b/2m

=> ĐPCM

5 tháng 6 2016

Vì x < y (\(\frac{a}{m}< \frac{b}{m}\)) và m > 0 nên a < b .

 x = \(\frac{a}{m}=\frac{2a}{2m}\); y = \(\frac{b}{m}=\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\). Ta có :

a < b nên a + a < a + b < b + b hay 2a < a + b < 2b => \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)=> x < z < y

19 tháng 8 2016

1. Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

                                                  

19 tháng 8 2016

ah ! xin lỗi ha, toán lớp 7 đoá !hihi

29 tháng 5 2018

bạn lưu câu hỏi ,rồi tìm trên google ,bạn bấm chọn cho 2 số hữu tỉ a/b và c/d và thấy tên thien ty tfboy đó là kết quả

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

16 tháng 6 2016

a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)

Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)

b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)

Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)

16 tháng 6 2016

a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\) 

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)