K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có a>b => 2a>2b
<=> -2a <-2b
<=>5-2a < 7-2b

8 tháng 5 2022

Ta có:

`a>b => 2a>2b`
`<=> -2a <-2b`
`<=>5-2a < 7-2b`

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: a<b

=>-2a>-2b

=>-2a-3>-2b-3

c: =x^2+2xy+y^2+y^2+6y+9

=(x+y)^2+(y+3)^2>=0 với mọi x,y

d: a+3>b+3

=>a>b

=>-5a<-5b

=>-5a+1<-5b+1

30 tháng 9 2017

Ta có: -3 < 5

⇒ 2b - 3 < 2b + 5 (cộng vào hai vế với 2b)

mà 2a - 3 < 2b - 3 (chứng minh ở câu a))

Vậy: 2a - 3 < 2b + 5 (Tính chất bắc cầu).

24 tháng 3 2022

a<b --> 2a<2b(nhân hai vế với một số dương thì bđt không đổi chiều) --> 2a-3 < 2b+5(trừ thì sẽ nhỏ hơn cộng)

28 tháng 3 2023

a)

`a>b`

`<=>2a>2b`

`<=>2a+4>2b+4`

b)

`a>b`

`<=>-2a<-2b`

`<=>7-2a<7-2b`

c)

`a>b`

`<=>5a>5b`

`<=>5a+3>5b+3`

mà `5b-3<5b+3`

`=>5a+3>5b-3`

d)

`a>b`

`<=>2a>2b`

`<=>2a+5>2b+5`

mà `2b+5>2b-1`

`=>2a+b>2b-1`

27 tháng 3 2018

Bài 1:

a). Ta có: a < b

=> -6a > -6b

mà 3 > 1

=> \(3-6a>1-6b\)

b)

Ta có: a < b

=> a - 2 < b - 2

=> \(7\left(a-2\right)< 7\left(b-2\right)\)

c)

Ta có: a < b

=> -2a > -2b

=> 1 - 2a > 1 - 2b

\(\Rightarrow\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)

1 tháng 4 2018

Bài 2:

a) Ta có:

a+23<b+23

\(\Leftrightarrow a< b\)

b) Ta có:

\(-12a>-12b\)

\(\Leftrightarrow a< b\)

c) Ta có:

\(5a-6\ge5b-6\)

\(a\ge b\)

d) Ta có:

\(\dfrac{-2a+3}{5}\le\dfrac{-2b+3}{5}\)

\(\Leftrightarrow-2a+3\le-2b+3\)

\(\Leftrightarrow a\ge b\)

26 tháng 4 2020

a)

\(a>b\\ \Leftrightarrow2a>2b\\ \Rightarrow2a+4>2b+4\)

b)

\(a>b\\ \Leftrightarrow-2a>-2b\\ \Rightarrow7-2a>7-2b\)

22 tháng 4 2017

a) Ta có: a < b

=> 2a < 2b vì 2 > 0

=> 2a - 3 < 2b - 3 (cộng vào cả hai vế -3)

b) Ta có: -3 < 5

=> 2b - 3 < 2b + 5 (cộng vào hai vế với 2b) mà 2a - 3 < 2b - 3 (chứng minh trên)

Vậy: 2a - 3 < 3b + 5 (tính chất bắc cầu)