
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) Ta có: a < b
=> 2a < 2b vì 2 > 0
=> 2a - 3 < 2b - 3 (cộng vào cả hai vế -3)
b) Ta có: -3 < 5
=> 2b - 3 < 2b + 5 (cộng vào hai vế với 2b) mà 2a - 3 < 2b - 3 (chứng minh trên)
Vậy: 2a - 3 < 3b + 5 (tính chất bắc cầu)


a)Vì a<b=>2a<2b
=>2a+5<2b+5
b)Vì a<b=>-10a>-10b
=>2-10a>2-10b
c)Vì a<b=>7a<7b
=>7a-3<7b-3(1)
Vì -3<-1=>7b-3<7b-1(2)
Từ (1) và (2)=>đpcm
d)Vì a<b=>\(-\dfrac{a}{3}< -\dfrac{b}{3}\)
=>\(3-\dfrac{a}{3}>3-\dfrac{b}{3}\)(3)
Vì 3>1=>\(3-\dfrac{b}{3}>1-\dfrac{b}{3}\)(4)
Từ (3) và (4)=> đpcm
a, Ta có: a < b \(\Rightarrow\) 2a < 2b \(\Rightarrow\) 2a + 5 < 2b + 5
b, Ta có: a < b \(\Rightarrow\) -10a > -10b (đổi dấu) \(\Rightarrow\) 2 + (-10a) > 2 + (-10b) \(\Leftrightarrow2-10a>2-10b\)
c, Ta có: a < b \(\Rightarrow\)7a < 7b
Lại có: -3 < -1
\(\Rightarrow\) 7a + (-3) < 7a + (-1) \(\Leftrightarrow\) 7a - 3 < 7b - 1
d, Ta có: a < b \(\Rightarrow-\dfrac{a}{3}>-\dfrac{b}{3}\)(đổi dấu)
Lại có: 3 > 1
\(\Rightarrow3+\left(-\dfrac{a}{3}\right)>1+\left(-\dfrac{b}{3}\right)\Leftrightarrow3-\dfrac{a}{3}>1-\dfrac{b}{3}\)

a) Ta có a>b
\(\Leftrightarrow2a>2b\)(nhân hai vế của bất đẳng thức cho 2)
\(\Leftrightarrow2a+3>2b+3\)(cộng hai vế của bất đẳng thức cho 3)
mà 2b+3>2b+1
nên 2a+3>2b+1
b) Ta có: a>b
\(\Leftrightarrow-2a< -2b\)(nhân hai vế của bất đẳng thức cho -2 và đổi chiều)
\(\Leftrightarrow-2a+\left(-6\right)< -2b+\left(-6\right)\)(cộng hai vế của bất đẳng thức cho -6)
\(\Leftrightarrow-2a-6< -2b-6\)
mà -2b-6<2b
nên -2a-6<-2b

Hai BĐT đều có dấu "=" xảy ra
a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)
\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y\)
b/ Áp dụng câu a:
\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)

1)a+3>b+3
=>a>b
=>-2a<-2b
=>-2a+1<-2b+1
2)x>0;y<0 =>x2.y<0;x.y2>0
=>x2.y<0;-x.y2<0
=>x2y-xy2<0
1.ta có a+3>b+3
suy ra -2a-6>-2b-6
=> (-2a-6)+5>(-2b-6)+5
=>-2a+1>-2b+1
2.vì x>0=> x^2>0 và y<0=>y^2>0
=> x^2*y<0 và x*y^2>0
=> x*y^2>x^2*y
=>x^2*y-x*y^2<0

a)
\(a>b\\ \Leftrightarrow2a>2b\\ \Rightarrow2a+4>2b+4\)
b)
\(a>b\\ \Leftrightarrow-2a>-2b\\ \Rightarrow7-2a>7-2b\)
ta có a>b => 2a>2b
<=> -2a <-2b
<=>5-2a < 7-2b
Ta có:
`a>b => 2a>2b`
`<=> -2a <-2b`
`<=>5-2a < 7-2b`