\(a,b,c\ge1\)thỏa mãn \(ab+bc+ca=9\)Tìm min 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Tự chứng minh: \(x^2+y^2+z^2\ge xy+yz+zx=9\)

11 tháng 5 2019

Tìm max nữa ạ 

4 tháng 5 2020

Bài 1 quan trong là đoán dấu đẳng thức.

1/  Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)

\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)

\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)

\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)

\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)

\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)

Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)

5 tháng 5 2020

Hiếm hoi thấy anh tth làm bất ko dùng sos

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

13 tháng 12 2017

Ta có: \(a^2+ab+b^2\)

        \(=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\frac{3\left(a+b\right)^2}{4}}=\frac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự, ta có:  \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}}{2}\left(b+c\right)\)

                            \(\sqrt{c^2+ca+a^2}\ge\frac{\sqrt{3}}{2}\left(c+a\right)\)

Do đó ta có: \(Q\ge\frac{\sqrt{3}}{2}\left(a+b+b+c+c+a\right)=\sqrt{3}\)       ( Do a+b+c=1)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

3

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+\left(b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\text{Đ}PCM\)

2b)

Ta có: \(x^2+y^2-4x-2y+5=0\Leftrightarrow x^2+y^2-4x-2y+4+1=0\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

c) \(x^4-11x^2+4x-21=0\Leftrightarrow x^4-10x^2+25-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^2-5\right)^2-\left(x-2\right)^2=0\Leftrightarrow\left(x^2-x-5+2\right)\left(x^2+x-5-2\right)=0\)

đến đây tự làm

16 tháng 12 2017

ta có P=\(\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)

Áp dụng bđt cố si ta có 

\(\sqrt{a-1}\le\frac{1}{2}\left(a-1+1\right)=\frac{1}{2}a\Rightarrow\frac{\sqrt{a-1}}{a}\le\frac{1}{2}\)

Tương tự mấy cái kia rồi + vào, để ý dấu = 

1 tháng 7 2020

Bạn tham khảo tại đây ạ!

Câu hỏi của danh Vô - Toán lớp 9 - Học toán với OnlineMath