Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{c+ab}\) =\(\sqrt{c\left(a+b+c\right)+ab}=\sqrt{c^2+ac+cb+ab}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\frac{ab}{\sqrt{c+ab}}\le\frac{ab}{2}\left(\frac{1}{c+a}+\frac{1}{b+c}\right)\)
ttu \(\frac{bc}{\sqrt{a+bc}}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right);\frac{ac}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{1}{b+a}+\frac{1}{a+c}\right)\)
\(\Rightarrow P\le\frac{bc+ac}{2\left(a+b\right)}+\frac{ac+ab}{2\left(a+b\right)}+\frac{bc+ab}{2\left(c+b\right)}=\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
dau = xay ra khi a=b=c=1/3
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
theo giả thiết => a+b+c=3abc
ta có:
\(P>=\frac{\left(b\sqrt{a}+a\sqrt{c}+c\sqrt{b}\right)^2}{2\left(a+b+c\right)}\)(theo cauchy schawarz)\(=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{6abc}\)
=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)(cô si)=3/2
dấu = xảy ra khi và chỉ khi a=b=c=\(\frac{1}{2}\)
Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)
Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\); \(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)
Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)
\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c\)
Bạn Thắng Nguyễn chạy mà bị kiệt sức ở giai đoạn cuối để mình chạy tiếp sức phần còn lại nhé.
Từ \(3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{3}{4}=\frac{9}{4}\)
\(\Rightarrow P\le\frac{\frac{9}{4}}{3}=\frac{3}{4}\)
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
Để tìm giá trị nhỏ nhất của biểu thức B = ab + bc + ca + a^3 + b^3 + c^3 / 5(ab + bc + ca) + 1, ta có thể sử dụng phương pháp đạo hàm.
Đầu tiên, ta tính đạo hàm của biểu thức B theo a, b và c. Đạo hàm riêng của B theo a, b và c được tính như sau:
∂B/∂a = 3a^2 + b^3 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(b + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂b = a^3 + 3b^2 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂c = a^3 + b^3 + 3c^2 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + b) / (5(ab + bc + ca) + 1)^2
Tiếp theo, ta giải hệ phương trình ∂B/∂a = ∂B/∂b = ∂B/∂c = 0 để tìm các điểm cực trị của biểu thức B.
Sau khi tìm được các điểm cực trị, ta so sánh giá trị của B tại các điểm cực trị và tại các điểm biên của miền xác định để tìm giá trị nhỏ nhất của B.
Tuy nhiên, việc giải phương trình và tính toán các giá trị có thể làm cho quá trình này trở nên phức tạp và mất nhiều thời gian.
Do đó, để tìm giá trị nhỏ nhất của biểu thức B, ta có thể sử dụng phương pháp khác như phương pháp đặt tính chất của hàm để giải quyết bài toán này.