Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô - Si ta có :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu " = " xảy ra khi a = b = c .
Bài 1:
a) Ta thấy:
\(x^4-2x^3+2x^2-2x+1=(x^4-2x^3+x^2)+(x^2-2x+1)\)
\(=(x^2-x)^2+(x-1)^2\geq 0, \forall x\in\mathbb{R}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-x=0\\ x-1=0\end{matrix}\right.\) hay $x=1$
b) Đề sai với $a=0,5; b=2,3; c=0,2$. Nếu đề bài của bạn giống bài dưới đây, tham khảo nó tại link sau:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\((a+b)+(b+c)+(c+a)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)
\(\Leftrightarrow 2(a+b+c)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)
\(\Rightarrow a+b+c\ge \frac{3}{2}\sqrt[3]{(a+b)(b+c)(c+a)}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a+b=b+c=c+a$ hay $a=b=c$
bđt \(\Leftrightarrow\)\(4a^3+b^3+c^3+2ab^2+2c^2a\ge4a^2b+4ca^2+b^2c+bc^2\) (1)
(1) đúng do :
\(2a^3+2ab^2\ge4a^2b\)
\(2a^3+2c^2a\ge4ca^2\)
\(b^3+c^3\ge b^2c+bc^2\)
Ta có: \(a\ge0,b\ge0,c\ge0\)
=>\(a+b+c\ge0\)
=>\(a+b\ge-c\)
=>\(\left(a+b\right)^3\ge\left(-c\right)^3\)
=>\(a^3+3a^2b+3ab^2+b^3\ge-c^3\)
=>\(a^3+b^3+3.ab.\left(a+b\right)-\left(-c^3\right)\ge0\)
=>\(a^3+b^3+c^3\ge-3ab.\left(a+b\right)\)
Vì a+b=-c
=>\(a^3+b^3+c^3\ge-3ab.\left(-c\right)\)
=>\(a^3+b^3+c^3\ge3abc\)
=>ĐPCM
Mình nhầm chỗ:
Vì \(a+b\ge-c\)
=>\(a^3+b^3+c^3\ge-3ab.\left(a+b\right)\ge-3ab.\left(-c\right)\)