\(a,b,c\ge0.CMR:\)

\(a^3+b^3+c^3\ge3abc\) 

gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

Ta có: \(a\ge0,b\ge0,c\ge0\)

=>\(a+b+c\ge0\)

=>\(a+b\ge-c\)

=>\(\left(a+b\right)^3\ge\left(-c\right)^3\)

=>\(a^3+3a^2b+3ab^2+b^3\ge-c^3\)

=>\(a^3+b^3+3.ab.\left(a+b\right)-\left(-c^3\right)\ge0\)

=>\(a^3+b^3+c^3\ge-3ab.\left(a+b\right)\)

Vì a+b=-c

=>\(a^3+b^3+c^3\ge-3ab.\left(-c\right)\)

=>\(a^3+b^3+c^3\ge3abc\)

=>ĐPCM

15 tháng 4 2016

Mình nhầm chỗ:

Vì \(a+b\ge-c\)

=>\(a^3+b^3+c^3\ge-3ab.\left(a+b\right)\ge-3ab.\left(-c\right)\)

22 tháng 7 2018

Áp dụng bất đẳng thức Cô - Si ta có :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu " = " xảy ra khi a = b = c .

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Bài 1:

a) Ta thấy:

\(x^4-2x^3+2x^2-2x+1=(x^4-2x^3+x^2)+(x^2-2x+1)\)

\(=(x^2-x)^2+(x-1)^2\geq 0, \forall x\in\mathbb{R}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-x=0\\ x-1=0\end{matrix}\right.\) hay $x=1$

b) Đề sai với $a=0,5; b=2,3; c=0,2$. Nếu đề bài của bạn giống bài dưới đây, tham khảo nó tại link sau:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\((a+b)+(b+c)+(c+a)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)

\(\Leftrightarrow 2(a+b+c)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)

\(\Rightarrow a+b+c\ge \frac{3}{2}\sqrt[3]{(a+b)(b+c)(c+a)}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a+b=b+c=c+a$ hay $a=b=c$

15 tháng 8 2020

bđt \(\Leftrightarrow\)\(4a^3+b^3+c^3+2ab^2+2c^2a\ge4a^2b+4ca^2+b^2c+bc^2\) (1) 

(1) đúng do : 

\(2a^3+2ab^2\ge4a^2b\)

\(2a^3+2c^2a\ge4ca^2\)

\(b^3+c^3\ge b^2c+bc^2\)