Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(BĐT\Leftrightarrow\sqrt{x}^2-2\sqrt{xy}+\sqrt{y}^2=\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)
ĐẲng thức xảy ra khi x = y
b)Sửa đề: biểu thức >= 8
Có: \(\frac{6}{a}-1=\frac{a+b+c}{a}-1=\frac{b+c}{a}\)
Tương tự hai đẳng thức còn lại rồi nhân theo vế:
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\frac{8abc}{abc}=8\) (đpcm)
đẳng thức xảy ra khi a = b = c = 2
Mày giỏi thế ?? Bài này sử dụng kiến thúc nào để giải đấy >>
bất đẳng thức schur bậc 3,dễ mà,c/m cũng dễ nữa,tự tra đi.gợi ý này:giả sử a>b>c nhé
Thử cách của em xem:)
Do vai trò bình đẳng giữa a, b, c ta có thể giả sử \(a\ge b\ge c\).
BĐT \(\Leftrightarrow\left(\frac{b+c-a}{2}\right)\left(b-c\right)^2+\left(\frac{c+a-b}{2}\right)\left(c-a\right)^2+\left(\frac{a+b-c}{2}\right)\left(a-b\right)^2\ge0\)
Đặt \(\frac{b+c-a}{2}=S_a;\frac{c+a-b}{2}=S_b;\frac{a+b-c}{2}=S_c\) thì:
\(S_b;S_c\ge0\Rightarrow S_b+S_c\ge0\left(1\right)\). và BĐT trở thành \(\Leftrightarrow S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge0\)
\(\Leftrightarrow S_a\left(b-c\right)^2+S_b\left(b-c+a-b\right)^2+S_c\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_c+S_b\right)\left(a-b\right)^2+2S_b\left(b-c\right)\left(a-b\right)\ge0\)
Do \(a\ge b\ge c\)và Sb > 0 nên \(2S_b\left(b-c\right)\left(a-b\right)\ge0\). Theo (1) thì Sb + Sc > 0. Kết hợp với (*), ta cần chứng minh:
\(\left(S_a+S_b\right)\left(b-c\right)^2\ge0\Leftrightarrow S_a+S_b\ge0\).
\(\Leftrightarrow\frac{b+c-a}{2}+\frac{c+a-b}{2}\ge0\Leftrightarrow c\ge0\) (luôn đúng)
Đẳng thức xảy ra khi \(a=b=c\text{hoặc }a=b;c=0\text{ và các hoán vị của nó.}\)
Sai thì em chịu nha!
bài này thật ra không khó chỉ cần tách đúng là được à bạn thử ngồi tách xem đi
Có \(VT=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)-\left(a^3+b^3+c^3\right)\)
BĐT cần chứng minh \(\Leftrightarrow ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\le a^3+b^3+c^3+3abc\)
Áp dụng bđt AM-GM có: \(\left(a+b-c\right)\left(a-b+c\right)\le\left[\dfrac{a+b-c+a-b+c}{2}\right]^2=a^2\)
Tương tự cũng có: \(\left(a-b+c\right)\left(b+c-a\right)\le c^2\); \(\left(a+b-c\right)\left(b+c-a\right)\le b^2\)
Nhân vế với vế\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(c+b-a\right)\le abc\) (lđ)
\(\Leftrightarrow3abc+a^3+b^3+c^3\ge ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)\) (BĐT cần chứng minh)
Dấu bằng xảy ra khi a=b=c
Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi
Xét \(2\left(a+b+c\right)=2a+2b+2c=\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\)
Áp dụng bđt cosi cho 3 bộ số ta có :
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(Dấu "=" xảy ra khi a = b = c)
\(\Rightarrow2\left(a+b+c\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Rightarrow a+b+c\ge\frac{3}{2}\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\RightarrowĐPCM\)
Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)
\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cộng vế với vế:
\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)
Lại có:
\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)