Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
=> \(\frac{2004a-2005b}{2004a+2005b}=\frac{2004bk-2005b}{2004bk+2005b}=\frac{2004k-2005}{2004k+2005}\left(1\right)\)
\(\frac{2004c-2005d}{2004c+2005d}=\frac{2004dk-2005d}{2004dk+2005d}=\frac{2004k-2005}{2004k+2005}\left(2\right)\)
Từ (1) và (2)
=> \(\frac{2004a-2005b}{2004a+2005b}=\frac{2004c-2005d}{2004c+2005d}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
Thay vào từng vế ta có
\(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => ĐPCM
a/b=c/d
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có :
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2
=> a/c.b/d= ( a+b/c+d ) mũ 2
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2
=> dpcm
a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
=>(a+5)(b-6)=(a-5)(b+6)
=>ab-6a+5b-30=ab+6a-5b-30
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
=>\(\dfrac{a}{b}=\dfrac{5}{6}\)
b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\cdot\dfrac{2004a-2005b}{2004a+2005b}=\dfrac{2004bk-2005b}{2004bk+2005b}\)
\(=\dfrac{b\left(2004k-2005\right)}{b\left(2004k+2005\right)}=\dfrac{2004k-2005}{2004k+2005}\)(1)
\(\cdot\dfrac{2004c-2005d}{2004d+2005d}=\dfrac{2004dk-2005d}{2004dk+2005d}\)
\(=\dfrac{d\left(2004k-2005\right)}{d\left(2004k-2005\right)}=\dfrac{2004k-2005}{2004-2005}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{2004a-2005b}{2004a+2005b}=\dfrac{2004c-2005d}{2004c+2005d}\)
ai dạy bạn z