K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\cdot\dfrac{2004a-2005b}{2004a+2005b}=\dfrac{2004bk-2005b}{2004bk+2005b}\)

\(=\dfrac{b\left(2004k-2005\right)}{b\left(2004k+2005\right)}=\dfrac{2004k-2005}{2004k+2005}\)(1)

\(\cdot\dfrac{2004c-2005d}{2004d+2005d}=\dfrac{2004dk-2005d}{2004dk+2005d}\)

\(=\dfrac{d\left(2004k-2005\right)}{d\left(2004k-2005\right)}=\dfrac{2004k-2005}{2004-2005}\)(2)

Từ (1) và (2) \(\Rightarrow\dfrac{2004a-2005b}{2004a+2005b}=\dfrac{2004c-2005d}{2004c+2005d}\)

19 tháng 10 2018

ai dạy bạn z

12 tháng 7 2017

Đặt 

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

=> \(\frac{2004a-2005b}{2004a+2005b}=\frac{2004bk-2005b}{2004bk+2005b}=\frac{2004k-2005}{2004k+2005}\left(1\right)\)

\(\frac{2004c-2005d}{2004c+2005d}=\frac{2004dk-2005d}{2004dk+2005d}=\frac{2004k-2005}{2004k+2005}\left(2\right)\)

Từ (1) và (2)

=> \(\frac{2004a-2005b}{2004a+2005b}=\frac{2004c-2005d}{2004c+2005d}\left(đpcm\right)\)

13 tháng 9 2021

Ta có:

a//b và a//c

⇒a⊥b và a⊥c

vì 1 đường thẳng cắt 2 đường thẳng và vuông góc với cả 2 thì 2 đường thẳng còn lại song song với nhau

⇒b//c

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

31 tháng 12 2023

a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

=>(a+5)(b-6)=(a-5)(b+6)

=>ab-6a+5b-30=ab+6a-5b-30

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

=>\(\dfrac{a}{b}=\dfrac{5}{6}\)

b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)