\(\frac{\left(a+b+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\frac{\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)

\(\Rightarrow16A=\frac{\left(a+b+c+d+e\right)^2\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)

Áp dụng AM-GM ta có:

\(\Rightarrow16A\ge\frac{4e\left(a+b+c+d\right)^2\left(a+b+c\right)\left(a+b\right)}{abcde}\)

\(\Rightarrow16A\ge\frac{4e.4d\left(a+b+c\right)^2\left(a+b\right)}{abcde}\)

\(\Rightarrow16A\ge\frac{4e.4d.4c\left(a+b\right)^2}{abcde}\)

\(\Rightarrow16A\ge\frac{4e.4d.4c.4ab}{abcde}\)

\(\Rightarrow A\ge16\)

Dấu "=" xảy ra khi đồng thời: 

\(\text{a+b+c+d+e=4, a+b+c+d=e, a+b+c=d, a+b=c, a=b}\)

\(\Rightarrow e=2,d=1,c=\frac{1}{2},a=\frac{1}{4},b=\frac{1}{4}\)

11 tháng 8 2019

Có: \(\frac{a}{b+c+d}+\frac{b+c+d}{a}=\frac{a}{b+c+d}+\frac{b+c+d}{9a}+\frac{8\left(b+c+d\right)}{9a}\)

\(\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{9a}}+\frac{8\left(b+c+d\right)}{9a}\)

\(=\frac{2}{3}+\frac{8\left(b+c+d\right)}{9a}\)

Tương tự ba BĐT còn lại và cộng theo vế thu được:

\(\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)=\frac{8}{3}+\frac{8}{9}\left(\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+c}{c}+\frac{a+b+c}{d}\right)\)

\(\ge\frac{8}{3}+\frac{32}{9}\sqrt[4]{\frac{\left(b+c+d\right)\left(c+d+a\right)\left(d+a+c\right)\left(a+b+c\right)}{abcd}}\)

\(\ge\frac{8}{3}+\frac{32}{9}\sqrt[4]{\frac{3^4.abcd}{abcd}}=\frac{40}{3}\)

Đẳng thức xảy ra khi a = b =c = d

P/s: Tính sai chỗ nào tự sửa nhá, dạo này hay nhầm lắm!

13 tháng 7 2016

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

  • TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
  • TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

30 tháng 10 2018

2. Đặt c + d = x

Ta có: \(a+b+c+d=0\Rightarrow a+b+x=0\Rightarrow a^3+b^3+c^3+d^3=3abx\)

\(\Rightarrow a^3+b^3+c^3+d^3+3cd\left(c+d\right)=3ab\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(ab-cd\right)\left(c+d\right)\)

Câu 4:

      \(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}+a^{1008}\)

\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}-2a^{1008}b^{1008}-2b^{1008}c^{1008}-2c^{1008}a^{1008}=0\)

\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2=0\)

\(\Rightarrow a^{1008}=b^{1008},b^{1008}=c^{1008},c^{1008}=a^{1008}\)

\(\Rightarrow a=b,b=c,c=a\) (vì a,b,c > 0 nên \(a\ne-b,b\ne-c,c\ne-a\) )

\(\Rightarrow a-b=0,b-c=0,a-c=0\)

Thay vào A ta tính được A = 0