Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số tự nhiên \(a,b,c,d,e\) thỏa mãn: \(a^b=b^c=c^d=d^e=e^a\). Chứng minh rằng: \(a=b=c=d=e\).

Nếu a khác b => a>b hoặc a<b
Xét a<b ta có :ab=bc=cd=de=ea và a<b => b>c;c<d;d>e;e<a ( vô lý)
=> a=b
Xét a>b ta có: ab=bc=cd=de=ea và a>b =>b<c;c>d;d<e;e>a (vô lý)
=>a=b
Nếu a=b=1 thì c=d=e=1; nếu a=b lớn hơn hoặc bằng 2 thì b=c=d=e
=> a=b=c=d=e (ở đây mk ko xét a=b=0 vì ko có 00 nha bạn)

Lời giải:
Từ \(b^2=ac; c^2=bd; d^2=ce\)
\(\Rightarrow \frac{b}{a}=\frac{c}{b}; \frac{c}{b}=\frac{d}{c}; \frac{d}{c}=\frac{e}{d}\)
\(\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}\).
Đặt \( \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}=k\Rightarrow b=ak; c=bk; d=ck; e=dk\)
Khi đó:
\(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a^4+b^4+c^4+d^4}{a^4k^4+b^4k^4+c^4k^4+d^4k^4}=\frac{a^4+b^4+c^4+d^4}{k^4(a^4+b^4+c^4+d^4)}=\frac{1}{k^4}(1)\)
Và: \(bcde=ak.bk.ck.dk\)
\(\Rightarrow e=ak^4\Rightarrow \frac{a}{e}=\frac{1}{k^4}(2)\)
Từ \((1);(2)\Rightarrow \frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)
Đặt \(k=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)
\(\Rightarrow k^4=\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{abcd}{bcde}=\frac{a}{e}\)
\(\Rightarrow\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{a}{e}\)(đpcm)

Giả sử a > b.
Kết hợp với ab = bc suy ra b < c.
Mà bc = cd nên c > d
Lại có cd = de nên d < e
Mặt khác: de = ea suy ra e > a
Mà ab = ea nên a < b (vô lí)
Giả sử: a < b.Chứng minh tương tự như trên thì điều này vô lí.
Vậy a = b
Mà ab = bc nên b = c
Tương tự như vậy ta được a = b = c = d = e.