Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số tự nhiên \(a,b,c,d,e\) thỏa mãn: \(a^b=b^c=c^d=d^e=e^a\). Chứng minh rằng: \(a=b=c=d=e\).
Nếu a khác b => a>b hoặc a<b
Xét a<b ta có :ab=bc=cd=de=ea và a<b => b>c;c<d;d>e;e<a ( vô lý)
=> a=b
Xét a>b ta có: ab=bc=cd=de=ea và a>b =>b<c;c>d;d<e;e>a (vô lý)
=>a=b
Nếu a=b=1 thì c=d=e=1; nếu a=b lớn hơn hoặc bằng 2 thì b=c=d=e
=> a=b=c=d=e (ở đây mk ko xét a=b=0 vì ko có 00 nha bạn)
Giả sử 2 số trong 5 số không bằng nhau . VD : a<b (1)
Vì vậy do ab=bc mà a<b => c<b
Ta có bc=cd mà c<b => c<d
Ta có cd = de mà c<d => e<d
Ta có de = ea mà e<d => a>e
Ta có ea = ab mà a>e => a>b (2)
Từ (1) và (2) => Giả sử trên là vô lí
Vậy a=b=c=d ( đcpm )
Thma khảo:Câu hỏi của Nguyễn Ngọc Sơn Lâm - Toán lớp 7 - Học toán với OnlineMath
Giả sử a > b.
Kết hợp với ab = bc suy ra b < c.
Mà bc = cd nên c > d
Lại có cd = de nên d < e
Mặt khác: de = ea suy ra e > a
Mà ab = ea nên a < b (vô lí)
Giả sử: a < b.Chứng minh tương tự như trên thì điều này vô lí.
Vậy a = b
Mà ab = bc nên b = c
Tương tự như vậy ta được a = b = c = d = e.
a)Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác,theo tính chất dãy tỉ số bằng nhau,ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+b+c+d}{b+d+c+e}=\frac{a+b+c+d}{b+c+d+e}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)^{\left(đpcm\: \right)}\)
b) Xin phép sửa đề! =) CMR: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\) (2)
Từ (1) và (2) ta có: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}^{\left(đpcm\right)}\)
P/s: Bạn đánh sai đề hoài như thế sẽ ảnh hưởng đến việc giải bài của các bạn khác gây khó khăn cho họ. Như vậy,họ sẽ không giúp bạn nữa. Rút kinh nghiệm lần sau đánh đề cẩn thận hơn nhé!
a) Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Leftrightarrow\frac{abcd}{bdce}=\frac{a}{2}\) (1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+c+b+d}{b+d+c+e}\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)\)( đpcm )
b) Mình sửa lại tí nha: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{\left(abcd\right)^4}{\left(bdce\right)^4}=\frac{a}{e}\)(1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+c^4+b^4+d^4}{b^4+d^4+c^4+e^4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)( đpcm )
GIẢ SỬ \(a\ne b\)
Xét a<b. Từ \(a^b=b^c=c^d=d^e=e^a=a^b\)
và a< b nên b>c, c<d, d>e, e<a, a>b. ( vô lý)
=> a<b là sai
Xét a>b. CMTT: => a> b là sai
=> a=b là đúng
Ta có: \(a^b=b^c=c^d=d^e=e^a\) và a=b
=> a=b=c=d=e (đpcm)
d= d* 1
= d* (af- be)
= daf- dbe
= daf- bcf+ bcf- dbe
= f (ad- bc)+b (cf- de)
Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1
=> f(ad- be)+ b(cf- de) >= f + b
<=> d >= b+f (đpcm)
lên google hoặc chtt