K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

678570

1 tháng 2 2017

ket qua la 678570

21 tháng 9 2017

Lê Minh Tuấn bn tham khảo nha:

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

21 tháng 9 2017

cảm ơn OoO Ledegill2 OoO

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$

$t^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}(1)$

Áp dụng tính chất dãy tỉ số bằng nhau:

$t^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}(2)$

Từ $(1);(2)$ ta có đpcm.

26 tháng 1 2016

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{d}.\frac{c}{d}.\frac{c}{d}\)

=>\(\frac{a.b.c}{b.c.d}=\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}\)

=>\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>ĐPCM

16 tháng 3 2023

\(\left.\begin{matrix} b^2=ac\Rightarrow \dfrac{a}{b}=\dfrac{b}{c} \\c^2=bd \Rightarrow \dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right\}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng t/c của DTSBN , ta có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{a^3+b^3+c^3}{d^3+c^3+d^3}\left(1\right)\)

Có `a^3/b^3=a/b*a/b*a/b=a/b*b/c*c/d=a/d` ( do `a/b=b/c=c/d` )`(2)

Từ `(1);(2)=>` \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

19 tháng 10 2017

Bài này dễ mà các bạn