K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

678570

1 tháng 2 2017

ket qua la 678570

21 tháng 9 2017

Lê Minh Tuấn bn tham khảo nha:

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

21 tháng 9 2017

cảm ơn OoO Ledegill2 OoO

19 tháng 10 2017

Bài này dễ mà các bạn

26 tháng 1 2016

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{d}.\frac{c}{d}.\frac{c}{d}\)

=>\(\frac{a.b.c}{b.c.d}=\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}\)

=>\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>ĐPCM

4 tháng 9 2020

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

Vậy.............

4 tháng 9 2020

Áp dụng t/c dãy tỉ số bằng nhau 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Suy ra  \(\left(\frac{a}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Ta có ddpcm 

1 tháng 10 2019

Trl nhanh cho mik vs ạ!! Mik đag cần gấp!!:33

1 tháng 10 2019

a) Đề phải là \(\frac{c}{a-c}=\frac{d}{b-d}\) chứ.

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{d}{b}=\frac{c}{a}\)

\(\Rightarrow\frac{b}{d}=\frac{a}{c}\)

\(\Rightarrow\frac{b}{d}-1=\frac{a}{c}-1\)

\(\Rightarrow\frac{b}{d}-\frac{d}{d}=\frac{a}{c}-\frac{c}{c}.\)

\(\Rightarrow\frac{b-d}{d}=\frac{a-c}{c}\)

\(\Rightarrow\frac{d}{b-d}=\frac{c}{a-c}\left(đpcm1\right).\)

c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\) (1)

\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\left(đpcm\right).\)

Chúc bạn học tốt!