Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức côsi, ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+d^2\ge2cd\)
\(a^2+d^2\ge2ad\)
\(\Rightarrow3\left(a^2+b^2+c^2+d^2\right)\)\(\ge2ab+2bc+2cd+2ad\)
Cộng vào hai vế:\(a^2+b^2+c^2+d^2\), ta có:
\(4\left(a^2+b^2+c^2+d^2\right)\)\(\ge\left(a+b+c+d\right)^2\)
Mà a + b + c + d = 4
\(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\)\(\ge4\)
\(\Rightarrow a^2+b^2+c^2+d^2\)\(\ge1\)
Dùng Bunyakovsky , có :
\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=4\)
\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge4\)
\(\left(a^2+b^2+c^2+d^2\right)\ge1\)
1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2
Cách khác:
Áp dụng BĐT AM-GM có:
\(\frac{a^4}{b+2}+\frac{b+2}{9}\geq \frac{2}{3}a^2\)
Hoàn toàn tương tự với các phân thức khác và cộng theo vế ta có:
\(\frac{a^4}{b+2}+\frac{b^4}{c+2}+\frac{c^4}{a+2}\geq \frac{2}{3}(a^2+b^2+c^2)-\frac{a+b+c+6}{9}=2-\frac{a+b+c+6}{9}(1)\)
Cũng theo hệ thức quen thuộc của BĐT AM-GM:
$3(a^2+b^2+c^2)\geq (a+b+c)^2\Leftrightarrow 9\geq (a+b+c)^2\Rightarrow a+b+c\leq 3(2)$
Từ $(1);(2)\Rightarrow \frac{a^4}{b+2}+\frac{b^4}{c+2}+\frac{c^4}{a+2}\geq 2-\frac{3+6}{9}=1$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
\(\frac{a^2}{b+2}\)\(+\frac{b+2}{9}\)\(\ge2\sqrt{\frac{a^2}{b+2}.\frac{b+2}{9}}=\frac{2}{3}\)
\(\Rightarrow\frac{a^2}{b+2}\ge\frac{2}{3}-\frac{b+2}{9}\)
ttu\(\frac{b^2}{c+2}\ge\frac{2}{3}-\frac{c+2}{9}\) \(\frac{c^2}{a+2}\ge\frac{2}{3}-\frac{a+2}{9}\)
cong vs nhau ta co \(vt\ge\frac{6}{3}-\frac{a+b+c+6}{9}=\frac{6}{3}-1=1\)
dau = xay ra khi x=y=z=1
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd-b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abc^2-abd^2+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ac-bd=0\\ad-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\) (ĐPCM)
Áp dụng BĐT Bunhiacopxki, ta có:
\(a+b+c+d\le\sqrt{\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)}=2\sqrt{a^2+b^2+c^2+d^2}\)
\(\Leftrightarrow\sqrt{a^2+b^2+c^2+d^2}\ge1\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge1\)(đpcm).